The filter что это – 40 фильтров Instagram: какие выбрать, чтобы превратить фото в шедевр

Содержание

filter - это... Что такое filter?

  1. электрический фильтр
  2. фильтровать
  3. фильтрация (файлов)
  4. фильтр СИЗОД
  5. фильтр (шлюз)
  6. фильтр (в информационных технологиях)
  7. фильтр
  8. светофильтр

 

фильтр
Устройство или сооружение для разделения, сгущения или осветления неоднородной системы, содержащей твёрдую или жидкую фазы, пропусканием сквозь пористую перегородку - фильтрующий слой
[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

фильтр
Однородный слой материала, обычно более высокого атомного номера, чем материал образца, располагаемый между источником излучения и пленкой в целях повышенного поглощения более мягкого излучения
[Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

фильтр
Электрическая схема, пропускающая сигналы в определенной полосе частот и ослабляющая сигналы на всех других частотах

[Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

фильтр
Электронный узел, пропускающий сигналы в определенной полосе частот и задерживающий остальные сигналы
[Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

фильтр
(в анализе временных рядов) - математико-статистический прием, формула для «отсеивания» из временного ряда вариаций, ненужных для целей исследования. Так, Ф., который устраняет сезонные или случайные колебания, оставляя для анализа тренд (или, например, длительные экономические циклы), можно назвать низкочастотным Ф. Высокочастотный же, наоборот, выделяет во временном ряде кратковременные колебания.
[http://slovar-lopatnikov.ru/]

Тематики

  • виды (методы) и технология неразр. контроля
  • фильтрование, центрифугирование, сепарирование
  • экономика

EN

DE

FR

 

фильтр
1. Устройство, пропускающее определенные частоты сигналов и вызывающее затухание других частот.
2. Инструмент для обработки изображений.
[http://www.morepc.ru/dict/]

Тематики

  • информационные технологии в целом

EN

 

фильтр (шлюз)
Средство, обеспечивающее связь двух однотипных локальных сетей (интерфейсов).
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

Тематики

  • информационные технологии в целом

EN

 

фильтр СИЗОД
Устройство СИЗОД, удаляющее загрязнения из проходящего через него воздуха.
[ГОСТ Р 12.4.233-2007] 

Тематики

  • средства индивидуальной защиты

EN

 

фильтрация (файлов)
Команда вывода на панель файлов, соответствующих определенному признаку.
[Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

Тематики

  • информационные технологии в целом

EN

 

фильтровать

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

Тематики

  • электротехника, основные понятия

EN

 

 

фильтр
-
[IEV number 151-13-55]


электрический фильтр
Электрическое устройство, в котором из спектра поданных на его вход электрических колебаний выделяются (пропускаются на выход) составляющие, расположенные в заданной области частот, и не пропускаются все остальные составляющие
[БСЭ]

EN

filter
linear two-port device designed to transmit spectral components of the input quantity according to a specified law, generally in order to pass the components in certain frequency bands and to attenuate those in other bands
Source: 702-09-17 MOD
[IEV number 151-13-55]

FR

filtre, m
biporte linéaire destiné à transmettre les composantes spectrales de la grandeur d’entrée selon une loi spécifiée, en général en vue de laisser passer les composantes dans certaines bandes de fréquences et à les affaiblir dans d’autres bandes

Source: 702-09-17 MOD
[IEV number 151-13-55]

EN

DE

FR

Англо-русский словарь нормативно-технической терминологии. academic.ru. 2015.

принципы работы и неочевидные факты / Tion corporate blog / Habr

Приветствуем вас в блоге компании Тион Умный микроклимат. Тема статьи — HEPA-фильтры.

Это высокоэффективные фильтры, главная цель которых – удалять из воздуха мелкодисперсные частицы, в том числе PM2.5 и PM10 (с диаметром менее 2,5 и 10 мкм соответственно). HEPA – это не бренд и не марка, а класс фильтров, который определяется международным и национальным стандартами ЕН 1822-1:2009 и ГОСТ Р ЕН 1822-1-2010.

Давайте посмотрим на HEPA-фильтр «с расстояния вытянутой руки», расскажем про принцип его работы и основные эффекты, благодаря которым происходит осаждение частиц на фильтре.

Основа любого HEPA-фильтра – хаотично расположенные волокна разной толщины, примерно 0,5-5 мкм. Расстояние между волокнами – порядка 5-50 мкм. Диаметр мелкодисперсных частиц – в пределах нескольких микрон или даже нескольких долей микрона. Возникает вопрос: как фильтр с такими большими порами задерживает такие мелкие частицы?

Обычно мы представляем фильтр в виде рыболовной сети или сачка: если фильтруемый объект больше ячейки, он застревает. Этот механизм называется эффектом сита (straining). Он работает для частиц, диаметр которых превышает размер пор в фильтре. На упрощенной модели эффект сита выглядит так:

Волокна фильтра представляются в виде цилиндров, расположенных поперек воздушного потока. Сам поток считается безвихревым. Модель частицы – шар с радиусом R. Если 2R больше расстояния между волокнами, частица застревает в фильтре. Чем крупнее частица, тем вероятнее она застревает в волокнах. Поэтому для крупных частиц эффект сита работает лучше:

На графике нет привязки к конкретным размерам, так как фильтры с разной толщиной волокон и разной плотностью упаковки будут задерживать разные фракции частиц. Форма кривой будет примерно той же, но она может «плавать» по горизонтальной шкале. Например, для фильтра грубой очистки класса G кривая будет располагаться правее, чем для фильтра тонкой очистки класса F. В фильтрах HEPA эффект сита тоже наблюдается. И если бы HEPA работал только по этому механизму, то кривая его эффективности выглядела бы примерно так же. Однако на деле она выглядит совсем по-другому:

По графику видно, что HEPA-фильтр задерживает частицы любого размера. И если эффективная фильтрация крупных частиц (около 5 мкм и больше) происходит по механизму сита, то фильтрация мелкодисперсных фракций (порядка 1-0,01 мкм) имеет другую природу.

Как HEPA-фильтр «ловит» мелкодисперсную пыль?


Основное отличие HEPA от фильтров грубой и тонкой очистки в том, что для фильтрации частице не обязательно застревать в волокнах. Если пылинка просто коснулась фильтровального материала, этого уже достаточно для и эффективного осаждения. Это связано с двумя процессами: адгезией и аутогезией.

Адгезия – это взаимодействие пыли с осаждающей поверхностью, в нашем случае с волокнами HEPA. Благодаря адгезии на чистых волокнах появляется первый слой пыли.

Аутогезия, или слипаемость – это взаимодействие пылевых частиц между собой. Благодаря аутогенному взаимодействию частицы продолжают наслаиваться друг на друга, образуя на волокнах многослойные конгломераты. Выглядят они так:

Природа адгезии и аутогезии – в молекулярном взаимодействии частиц друг с другом и с волокнами (силы Ван-дер-Ваальса). Эти силы появляются на расстоянии от одного до нескольких сот диаметров частиц. Для мельчайших частиц притяжение к волокну и пылевому слою настолько большое, что частицы оседают в HEPA-фильтре фактически навсегда. Цифры это подтверждают: для частиц меньше 10 мкм прочность пылевого слоя на разрыв – больше 600 Па.

Итак, из-за сил притяжения частица практически намертво прилипает к волокну HEPA-фильтра, стоит только коснуться его поверхности. Это объясняет удерживание частиц на фильтре, но по-прежнему нет ответа на вопрос:

Как мельчайшие частицы касаются волокна HEPA-фильтра?


Как мы выяснили, эффект сита тут ни при чем – мельчайшие частицы свободно пролетают через поры. В фильтрах НЕРА действуют другие механизмы.

Любая частица удерживается в воздушном потоке, и, если в фильтре не возникают силы, отклоняющие частицу от линии тока воздуха в сторону волокна, то осаждения не будет. В результате частица проскочит через фильтр вместе с потоком. Поэтому вопрос «Как частицы касаются волокна?» можно перефразировать: «Как частицы выходят из воздушного потока?» И ответ на него будет разным, в зависимости от размера и массы частицы.

Самые мелкие частицы (с диаметром меньше 0,1 мкм) обладают небольшой массой и постоянно находятся в хаотичном броуновском движении. Их траектория постоянно колеблется относительно линии тока воздуха. В ходе колебаний частица выходит из потока, касается волокна и осаждается. Это эффект диффузии:

Более крупные частицы (с диаметром больше 0,3 мкм) весят больше, поэтому их колебания относительно линии тока меньше либо отсутствуют вообще. Такие частицы осаждаются по другому механизму. На модели видно, что линии воздушного потока искривляются вблизи волокна, огибая препятствие. Крупные и тяжелые частицы за счет инерции выходят из воздушного потока, сталкиваются с волокном и осаждаются. Это эффект инерции:

Диффузионный и инерционный эффекты дополняют друг друга: один отвечает за фильтрацию самых мелких частиц, другой – более крупных:

Сложнее всего посадить на волокно частицы с «промежуточным» размером. Их инерция еще недостаточно большая, а диффузия уже работает слабо, так как колебания их траектории относительно линии тока уже не такие сильные. Поэтому такие частицы с большей вероятностью остаются в потоке и огибают волокна вместе с воздухом. Их называют частицами с максимальной проникающей способностью, Most Penetrating Particle Size (MPPS). И для их осаждения наибольшее значение имеет последний механизм –

эффект зацепления:

Эффект зацепления работает, когда частица приблизилась к поверхности волокна на расстояние своего радиуса. Такого касания достаточно для ее осаждения. Этот механизм работает не только для MPPS. Он универсальный и действует для частиц любого размера. Пылинки могут оставаться в воздушном потоке, совершать диффузионные колебания относительно линии тока или вылетать из потока благодаря инерции – в любом случае, если частица коснулась волокна, она осаждается.

Эффективность этого механизма зависит от размера частицы. Чем больше частица, тем вероятнее она коснется волокна. В этом эффект зацепления похож на эффект сита, потому и график почти одинаковый (естественно, с привязкой в другому диапазону частиц):

В действительности в HEPA-фильтре на частицу одновременно действуют все механизмы, поэтому общая эффективность HEPA-фильтра равняется сумме вкладов каждого эффекта:

ηобщая = ηсита + ηзацепления + ηинерции + ηдиффузии

Если постоянно нагружать HEPA аэрозолем с крупными частицами, то срок работы фильтра значительно сокращается. Это происходит из-за эффекта сита: крупные частицы быстро забивают фильтр и снижают его проницаемость. Чтобы избежать эффекта сита, перед HEPA-фильтром устанавливают один или несколько префильтров более низкого класса: G и/или F. Они защищают HEPA от преждевременного засорения. Если префильтры стоят, то HEPA работает строго «по специальности» — фильтрация мелкодисперсных частиц. Таким образом, остаются три эффекта:

ηобщая = ηзацепления + ηинерции + ηдиффузии

Если сложить все три графика эффективности для каждого механизма, то получим ту самую кривую общей эффективности HEPA-фильтра, которую мы показывали в начале статьи:

Как видим в диапазоне MPPS (примерно от 0,1 до 0,3 мкм) общая эффективность HEPA-фильтра «падает в яму». И именно по MPPS измеряют общую эффективность. HEPA-фильтра класса h20 (по новой номенклатуре E10) работает с эффективностью более 85%, а фильтра класса h21 (E11) – более 95%. Это значит, что в HEPA-фильтре E11 осаждаются 95 из 100 частиц MPPS. При этом остальные частицы осаждаются с вероятностью почти 100%, но итоговую эффективность принято указывать по MPPS, 95%.

От чего зависит эффективность HEPA-фильтра?


Эффективность HEPA зависит не только от размеров фильтруемых частиц, но и от параметров самого фильтра:
  • Диаметр волокон в HEPA-фильтре
  • Плотность упаковки волокон
  • Материал волокон

Чем тоньше волокна и чем плотнее они упакованы, тем больше площадь их соприкосновения с частицами. И чем лучше волокна «цепляют», тем эффективнее осаждение. Если материал, из которого сделан фильтр, обладает высокой удельной проводимостью, то волокна могут заряжаться в воздушном потоке. В этом случае между волокнами и частицами возникают силы электростатического притяжения (силы Кулона). Они дополнительно увеличивают эффективность HEPA-фильтра. Подробнее этот эффект мы здесь рассматривать не будем, про электростатическое осаждение расскажем в другой статье.

При осаждении частиц уменьшается расстояние между волокнами:

В результате площадь волокон увеличивается, и с этим связан парадоксальный факт: со временем эффективность HEPA не уменьшается, а растет. С другой стороны, при загрязнении уменьшается проницаемость фильтра, увеличивается его сопротивление, растет перепад давления на фильтре и, как следствие, уменьшается производительность прибора, в котором тот установлен. Если фильтр забился полностью и производительность прибора упала почти до нуля, единственный выход – заменить фильтр. Частота замены зависит от емкости фильтра. Этот показатель определяет, как много пыли сможет осадить HEPA, прежде чем перепад давления на нем станет критическим.

Теперь, когда мы имеем представление о HEPA-фильтре, соберем по пунктам принцип его работы:

  1. В фильтр попадает воздушный поток с пылинками разного размера, от 10 мкм и меньше
  2. Крупные частицы выходят из воздушного потока благодаря эффекту инерции, мелкие частицы – благодаря эффекту диффузии
  3. На фильтре оседают все частицы, которые вышли из потока и коснулись волокна
  4. На волокне частицы прочно удерживаются благодаря силам притяжения (Ван-дер-Ваальса)

Также соберем в одном месте все неочевидные факты о HEPA-фильтре:
  • HEPA-фильтр может задерживать частицы всех размеров
  • Пыль задерживается в HEPA-фильтре практически навсегда. Пылесосить HEPA бесполезно – только менять.
  • Со временем эффективность HEPA-фильтра только растет.

На этом пока все: мы рассказали про принципы осаждения и удержания мелкодисперсной пыли в HEPA-фильтрах. Если у вас есть вопросы, будем рады ответить на них в комментариях.

Читайте также:
Охота на душный воздух: сколько СО2 в Москве?
Микроклимат против гриппа: как убить вирус с помощью вентиляции и увлажнителя

Фото НЕРА фильтров взяты отсюда и отсюда.

Фильтр — Википедия

Материал из Википедии — свободной энциклопедии

Фильтр (от лат. filtrum — «войлок») — понятия, устройства, механизмы, выделяющие (или удаляющие) из исходного объекта некоторую часть с заданными свойствами.

Фильтры для жидкостей[править | править код]

Разновидности фильтров воды
  • Фильтр для воды — устройство, предназначенное для очистки воды от вредных веществ или микроорганизмов.
    • Фильтр аквариумный — устройство, предназначенное для очистки аквариумной воды.
    • Фильтр прудовый — устройство, предназначенное для очистки воды в искусственных водоёмах (прудах, ручьях, водопадах, садовых аквариумах). Прудовые фильтры обеспечивают механическую, биологическую и химическую фильтрацию воды.
  • Фильтр масляный — устройство, предназначенное для удаления загрязнений из моторных, трансмиссионных, смазочных масел и гидравлических жидкостей.
  • Фильтр топливный — устройство, предназначенное для отсеивания частиц пыли и ржавчины, во избежание попадания их в топливную магистраль и камеру сгорания.
  • Фильтр-пресс — аппарат периодического действия, предназначенный для разделения под давлением жидких неоднородных систем (суспензий, пульп) на жидкую фазу (фильтрат) и твёрдую фазу (осадок, кек).

Фильтры для газов[править | править код]

  • Фильтр воздушный — элемент (бумажный, матерчатый, войлочный, поролоновый, сетчатый или иной), который служит для очистки от пыли (обработки) воздуха, подаваемого в помещения системами вентиляции и кондиционирования или используемого в технологических процессах (например, при получении кислорода), в газовых турбинах, в двигателях внутреннего сгорания и др.
  • Фильтр рукавный — фильтр, применяемый для тонкой (20 мг/м3 и ниже) индустриальной очистки дымовых газов на различных производствах для снижения уровня выбросов в атмосферу NO2, SO2 и пыли.
  • Фильтр электростатический — фильтр, применяемый для базовой (30 - 50 мг/м3 и выше) индустриальной очистки дымовых газов на различных производствах для снижения уровня выбросов в атмосферу NO2, SO2 и пыли.
  • Фильтр сигаретный — фильтр, применяемый в сигаретах для уменьшения количества вдыхаемых курильщиком смол.
  • Фильтр газовый — фильтр, используемый в химической промышленности для очистки технологических газов от механических примесей.
  • HEPA — фильтр тонкой очистки воздуха.

Фильтры оптические[править | править код]

Фильтры в электронике[править | править код]

  • Фильтр в электронике — устройство, предназначенное для выделения желательных компонент спектра аналогового сигнала и подавления нежелательных.
  • Фильтр коаксиальный — электрический фильтр, состоящий из элементов (отрезков) коаксиального кабеля, предназначенный для селекции сигналов на дециметровом и сантиметровом диапазонах волн.
  • Фильтр цифровой — устройство для обработки дискретного во времени сигнала; в результате обработки спектральный состав сигнала меняется требуемым образом.

Коллаборативная фильтрация — Википедия

На данной анимации показан пример прогнозирования оценки пользователя с помощью коллаборативной фильтрации. В данной системе пользователи оставляют оценки различным предметам (например видео, книгам, играм). После этого система прогнозирует оценки пользователя для предметов, которые он ещё не оценил. Прогнозы строятся на основе оценок пользователей, которые имеют одинаковые оценки с текущим пользователем для других предметов. В данном случае система сделала прогноз о том, что текущему пользователю видео, которое оценили другие пользователи, не понравится.

Коллаборативная фильтрация, совместная фильтрация (англ. collaborative filtering) — это один из методов построения прогнозов (рекомендаций) в рекомендательных системах[⇨], использующий известные предпочтения (оценки) группы пользователей для прогнозирования неизвестных предпочтений другого пользователя.[1] Его основное допущение состоит в следующем: те, кто одинаково оценивал какие-либо предметы в прошлом, склонны давать похожие оценки другим предметам и в будущем.[1] Например, с помощью коллаборативной фильтрации музыкальное приложение способно прогнозировать, какая музыка понравится пользователю[⇨], имея неполный список его предпочтений (симпатий и антипатий).[2] Прогнозы составляются индивидуально для каждого пользователя, хотя используемая информация собрана от многих участников. Тем самым коллаборативная фильтрация отличается от более простого подхода, дающего усреднённую оценку для каждого объекта интереса, к примеру, базирующуюся на количестве поданных за него голосов. Исследования в данной области активно ведутся и в наше время, что также обуславливается и наличием нерешённых проблем в коллаборативной фильтрации.[⇨]

В век информационного взрыва такие методы создания персонализированных рекомендаций, как коллаборативная фильтрация, очень полезны, поскольку количество объектов даже в одной категории (такой, как фильмы, музыка, книги, новости, веб-сайты) стало настолько большим, что отдельный человек не способен просмотреть их все, чтобы выбрать подходящие.

Системы коллаборативной фильтрации обычно применяют двухступенчатую схему[1]:

  1. Находят тех, кто разделяет оценочные суждения «активного» (прогнозируемого) пользователя.
  2. Используют оценки сходно мыслящих людей, найденных на первом шаге, для вычисления прогноза.

Алгоритм, описанный выше, построен относительно пользователей системы.

Существует и альтернативный алгоритм, изобретённый Amazon[3], построенный относительно предметов (продуктов) в системе. Этот алгоритм включает в себя следующие шаги:

  1. Строим матрицу, определяющую отношения между парами предметов, для нахождения похожих предметов.
  2. Используя построенную матрицу и информацию о пользователе, строим прогнозы его оценок.

Для примера, можно посмотреть семейство алгоритмов Slope One

Также существует другая форма коллаборативной фильтрации, которая основывается на скрытом наблюдении обычного поведения пользователя (в противоположность явному, который собирает оценки пользователей). В этих системах вы наблюдаете, как поступил данный пользователь, и как — другие (какую музыку они слушали, какие видео посмотрели, какие композиции приобрели), и используете полученные данные, чтобы предсказать поведение пользователя в будущем, или предсказать, как пользователь желал бы поступить при наличии определённой возможности. Эти предсказания должны быть составлены согласно бизнес-логике, так как например, бесполезно предлагать кому-либо купить музыкальный файл, который у него уже имеется.

Типы коллаборативной фильтрации

Существует 2 основных метода, используемых при создании рекомендательных систем — коллаборативная фильтрация и контентно-основанные рекомендации. Также на практике используется гибридный метод построения рекомендаций, который включает в себя смесь вышеперечисленных методов. Коллаборативная фильтрация, в свою очередь, также разделяется на 3 основных подхода (типа) [4]:

Основанный на соседстве[править | править код]

Этот подход является исторически первым в коллаборативной фильтрации и используется во многих рекомендательных системах. В данном подходе для активного пользователя подбирается подгруппа пользователей схожих с ним. Комбинация весов и оценок подгруппы используется для прогноза оценок активного пользователя[5]. У данного подхода можно выделить следующие основные шаги:

  1. Присвоить вес каждому пользователю с учётом схожести его оценок и активного пользователя.
  2. Выбрать несколько пользователей, которые имеют максимальный вес, то есть максимально похожи на активного пользователя. Данная группа пользователей и называется соседями[6].
  3. Высчитать предсказание оценок активного пользователя для неоценённых им предметов с учётом весов и оценок соседей.

Основанный на модели[править | править код]

Данный подход предоставляет рекомендации, измеряя параметры статистических моделей для оценок пользователей, построенных с помощью таких методов как, метод байесовских сетей, кластеризации, латентной семантической модели, такие как сингулярное разложение, вероятностный латентный семантический анализ, скрытое распределение Дирихле и марковской процесс принятия решений на основе моделей. [5] Модели разрабатываются с использованием интеллектуального анализа данных, алгоритмов машинного обучения, чтобы найти закономерности на основе обучающих данных. Число параметров в модели может быть уменьшено в зависимости от типа с помощью метода главных компонент.

Этот подход является более комплексным и даёт более точные прогнозы, так как помогает раскрыть латентные факторы, объясняющие наблюдаемые оценки. [7]

Данный подход имеет ряд преимуществ. Он обрабатывает разреженные матрицы лучше, чем подход основанный на соседстве, что в свою очередь помогает с масштабируемостью больших наборов данных.

Недостатки этого подхода заключаются в «дорогом» создании модели[8]. Необходим компромисс между точностью и размером модели, так как можно потерять полезную информацию в связи с сокращением моделей.

Гибридный[править | править код]

Данный подход объединяет в себе подход основанный на соседстве и основанный на модели. Гибридный подход является самым распространённым при разработке рекомендательных систем для коммерческих сайтов, так как он помогает преодолеть ограничения изначального оригинального подхода (основанного на соседстве) и улучшить качество предсказаний. Этот подход также позволяет преодолеть проблему разреженности данных[⇨] и потери информации. Однако данный подход сложен и дорог в реализации и применении.[9]

Разреженность данных[править | править код]

Как правило, большинство коммерческих рекомендательных систем основано на большом количестве данных (товаров), в то время как большинство пользователей не ставит оценки товарам. В результате этого матрица «предмет-пользователь» получается очень большой и разреженной, что представляет проблемы при вычислении рекомендаций. Эта проблема особенно остра для новых, только что появившихся систем.[4] Также разреженность данных усиливает проблему холодного старта.

Масштабируемость[править | править код]

С увеличением количества пользователей в системе, появляется проблема масштабируемости. Например, имея 10 миллионов покупателей O(M){\displaystyle O(M)} и миллион предметов O(N){\displaystyle O(N)}, алгоритм коллаборативной фильтрации со сложностью равной O(MN){\displaystyle O(MN)} уже слишком сложен для расчётов. Также, многие системы должны моментально реагировать на онлайн запросы от всех пользователей, независимо от истории их покупок и оценок, что требует ещё большей масштабируемости.

Проблема холодного старта[править | править код]

Новые предметы или пользователи представляют большую проблему для рекомендательных систем. Частично проблему помогает решить подход, основанный на анализе содержимого, так как он полагается не на оценки, а на атрибуты, что помогает включать новые предметы в рекомендации для пользователей. Однако проблему с предоставлением рекомендации для нового пользователя решить сложнее.[4]

Синонимия[править | править код]

Синонимией называется тенденция похожих и одинаковых предметов иметь разные имена. Большинство рекомендательных систем не способны обнаружить эти скрытые связи и поэтому относятся к этим предметам как к разным. Например, «фильмы для детей» и «детский фильм» относятся к одному жанру, но система воспринимает их как разные.[5]

Мошенничество[править | править код]

В рекомендательных системах, где каждый может ставить оценки, люди могут давать позитивные оценки своим предметам и плохие своим конкурентам. Также, рекомендательные системы стали сильно влиять на продажи и прибыль, с тех пор как получили широкое применении в коммерческих сайтах. Это приводит к тому, что недобросовестные поставщики пытаются мошенническим образом поднимать рейтинг своих продуктов и понижать рейтинг своих конкурентов.[4]

Разнообразие[править | править код]

Коллаборативная фильтрация изначально призвана увеличить разнообразие, чтобы позволить открывать пользователям новые продукты из бесчисленного множества. Однако некоторые алгоритмы, в частности основанные на продажах и рейтингах, создают очень сложные условия для продвижения новых и малоизвестных продуктов, так как их замещают популярные продукты, которые давно находятся на рынке. Это в свою очередь только увеличивает эффект «богатые становятся ещё богаче» и приводит к меньшему разнообразию.[10]

Белые вороны[править | править код]

К «белым воронам» относятся пользователи, чьё мнение постоянно не совпадает с большинством остальных. Из-за их уникального вкуса, им невозможно что-либо рекомендовать. Однако, такие люди имеют проблемы с получением рекомендаций и в реальной жизни, поэтому поиски решения данной проблемы в настоящее время не ведутся.[5]

Коллаборативная фильтрация широко используется в коммерческих сервисах и социальных сетях. Первый сценарий использования это создание рекомендации относительно интересной и популярной информации на основе учёта «голосов» сообщества. Такие сервисы, как Reddit и Digg — это типичные примеры систем, использующих алгоритмы коллаборативной фильтрации.

Другая сфера использования заключается в создании персонализированных рекомендаций для пользователя, на основе его предыдущей активности и данных о предпочтениях других, схожих с ним пользователей. Данный способ реализации можно найти на таких сайтах, как YouTube, Last.fm и Amazon[3], а также в таких геолокационных сервисах, как Gvidi и Foursquare.

  1. 1 2 3 A Survey of Collaborative Filtering Techniques, 2009, p. 1.
  2. ↑ An integrated approach to TV Recommendations by TV Genius Архивировано 6 июня 2012 года.
  3. 1 2 Amazon, 2003, с. 1.
  4. 1 2 3 4 Проблемы в рекомендательных системах, 2010, с. 7.
  5. 1 2 3 4 A Survey of Collaborative Filtering Techniques, 2009, p. 3.
  6. ↑ K-nearest neighbor algorithm
  7. ↑ Масштабируемая и точная коллаборативная фильтрация, 2009.
  8. ↑ A Survey of Collaborative Filtering Techniques, 2009, p. 3-4.
  9. ↑ Проблемы в рекомендательных системах, 2010, с. 6.
  10. ↑ Проблема разнообразия, 2009, p. 23.

filter - это... Что такое filter?

  • Filter [1] — Filter. Strömt eine Flüssigkeit so durch einen porösen Körper, daß die in ersterer enthaltenen Suspensionen dem letzteren durch Adhäsion verbleiben[26] oder sich vor demselben festlegen, so nennt man den Vorgang Filtration, den Körper das Filter… …   Lexikon der gesamten Technik

  • Filter — may refer to: Chemistry, engineering and materials In chemistry, engineering, or household usage, a device to separate mixtures. See: * Filter (chemistry) * Water filter * Air filter * Oil filter * Pneumatic filter Optics and photography In… …   Wikipedia

  • Filter — Состав 2008 года в Кувейте …   Википедия

  • Filter — (m., n., nach fr. filtrer, it. feltrare, „durchseihen“; ursprünglich „durch Filz laufen lassen“ zu germanisch *felt „Filz“) steht für: Geräte, Bauteile oder Baugruppen: Filter (Elektrotechnik), eine elektrische Schaltung, die bestimmte Frequenzen …   Deutsch Wikipedia

  • Filter — Saltar a navegación, búsqueda Filter Información personal Origen Cleveland, Ohio, Estados Unidos …   Wikipedia Español

  • filter — [fil′tər] n. [ME filtre < OFr < ML filtrum, feltrum, felt, fulled wool (used for straining liquors) < Gmc: see FELT1] 1. a device for separating solid particles, impurities, etc. from a liquid or gas by passing it through a porous… …   English World dictionary

  • Filter — Fil ter, v. t. [imp. & p. p. {Filtered}; p. pr. & vb. n. {Filtering}] [Cf. F. filter. See {Filter}, n., and cf. {Filtrate}.] To purify or defecate, as water or other liquid, by causing it to pass through a filter. [1913 Webster] {Filtering paper} …   The Collaborative International Dictionary of English

  • Filter — Pays d’origine  États Unis, Cleveland (Ohio) Genre musical Rock industriel Post grunge …   Wikipédia en Français

  • Filter — Sm std. (16. Jh., Form 19. Jh.) Entlehnung. Zunächst in lateinischer Form entlehnt aus ml. filtrum n., eigentlich (Seihgerät aus) Filz , dieses aus g. * filta Filz (Filz), wohl über das Niederfränkische. Verbum: filtern, filtrieren.    Ebenso… …   Etymologisches Wörterbuch der deutschen sprache

  • Filter — Fil ter, n. [F. filtre, the same word as feutre felt, LL. filtrum, feltrum, felt, fulled wool, this being used for straining liquors. See {Feuter}.] Any porous substance, as cloth, paper, sand, or charcoal, through which water or other liquid may …   The Collaborative International Dictionary of English

  • Filter [2] — Filter. In neuerer Zeit haben die Schnellfilter Verbreitung gefunden. Sie werden verwendet: 1. zur Klärung natürlich trüben Rohwassers für gewerbliche Zwecke; 2. zur Klärung von chemisch vorbehandeltem Wasser; 3. zur Vorbehandlung von Wasser vor… …   Lexikon der gesamten Technik

  • Светофильтр — Википедия

    Набор светофильтров.

    Светофильтр в оптике, технике — оптическое устройство, которое служит для подавления (выделения) части спектра электромагнитного излучения.

    Светофильтры съёмочные[править | править код]

    Различные съёмочные светофильтры

    Светофильтр в фотографии и кинематографе, съёмочный светофильтр — оптическое устройство, которое служит для подавления, выделения или преобразования части светового потока, обычно части спектра.

    • Светофильтры воздействуют на световой поток, не ограничивая его апертуру или поле зрения, в отличие от апертурной диафрагмы, полевой диафрагмы.
    • Светофильтры предназначены для воздействия на основной световой поток от снимаемой сцены, в отличие от бленды, ограничивающей действие паразитного светового потока.
    • Светофильтры (кроме некоторых эффектных, призматических), в отличие от линз, не изменяют направления световых лучей в оптической системе.

    Устанавливается на объектив оптических приборов или фотокамер. В фотографии светофильтры применяются для корректировки цвета, изменения яркости и контрастности фотографируемых объектов уже в процессе фотографирования. Светофильтры применяются также для воспроизводства различных цветовых и световых эффектов.

    Крепление светофильтров к объективу осуществляется обычно резьбовым соединением, перед передней линзой объектива.

    Для сверхширокоугольных объективов часто предусматривают крепление за задней линзой объектива. Оптические схемы таких объективов специфичны, передние линзы часто очень велики, а передние светофильтры таких объективов должны иметь ещё больший диаметр во избежание виньетирования. Фильтры нужных диаметров очень велики, дороги, тяжелы и громоздки, что и создаёт предпосылку для использования задних светофильтров.
    У объективов «фишай» вообще принципиально невозможно установить передний светофильтр из-за выдающейся вперёд сильно выпуклой передней линзы.

    В схемах широкоугольных объективов с устанавливаемым задним фильтром, в качестве заднего элемента, постоянно присутствует нейтральный фильтр, который может заменяться на другой по желанию. При снятии заменяемого фильтра — стандартный нейтральный возвращается на место, во избежание изменения оптических характеристик объектива.

    В проекционных и осветительных системах фильтры (особенно тепловые) часто устанавливаются между источником света и остальной оптической системой.

    Крепление светофильтров к объективу, совмещённое со светозащитной блендой, называется компендиум.

    Маркируются съёмочные светофильтры диаметром присоединительной резьбы, условным обозначением типа фильтра и необязательным указанием кратности экспозиции (1x — не требуется изменение экспозиции, 1,4x — требуется изменение на пол ступени, 4x — требуется увеличение экспозиции на 2 ступени). Кратность фильтра зависит от спектрального состава света и от спектральной чувствительности фотоматериала. Например, светофильтр Ж-2x имеет кратность около 6x для изоортохроматических и 2x — для панхроматических материалов при спектральном составе света, близком к дневному освещению.[1]

    Важным является наличие просветления на светофильтре. Оно уменьшает долю отражённого света от оптических поверхностей светофильтра, что позволяет увеличить светопропускание, а также, что зачастую намного более важно, увеличивает контраст изображения за счёт уменьшения паразитных засветок, и увеличивает качество изображения, устраняя или уменьшая дефекты в виде бликов на изображении. Просветление важно для всех типов светофильтров.

    Защитный фильтр[править | править код]

    Предназначен для предохранения передней поверхности объектива от механических воздействий. Обычно эти фильтры обозначаются (N) — простое прозрачное осветлённое стекло. Часто в этой роли используется ультрафиолетовый фильтр (UV — англ. UltraViolet). Дополнительную ценность защитным фильтрам придаёт многослойное просветление (MC, HMC, UMC и т. д.), а также водозащитное покрытие (WPC — англ. Water Proof Coat — водонепроницаемое покрытие).[2]

    Нейтральный фильтр[править | править код]
    Демонстрация работы нейтрального фильтра.

    Служит для снижения эффективной светосилы объектива без изменения геометрической, а также для снижения эффективной светосилы объектива, не имеющего диафрагмы.

    Нейтральные фильтры бывают разной плотности, и это указано в названии. Самый светлый — Н-2x, или ND2. Цифра в названии означает долю света, которая через фильтр проходит (для ND2 доля равна 1/2, то есть, половина), или, другими словами, во сколько раз нужно увеличить экспозицию при съёмке с этим фильтром. Более тёмным будет ND4, или Н-4x, обозначаемый так же НС8 (нейтральное стекло тип 8), затем ND8, например. Если поставить несколько фильтров подряд, то, чтобы найти итоговую кратность этой совокупности фильтров, надо перемножить между собой кратности всех установленных фильтров. Например при установке вместе двух фильтров ND2 и ND4, итоговая кратность будет равна 2×4=8, как у одиночного фильтра ND8.

    Чтобы фотографировать с выдержкой в несколько секунд в солнечную погоду, понадобится ND400, ND1000 и больше.[3]

    Существуют также нейтральные фильтры с плавной регулировкой плотности (variable range nd filter) от ND2 до ND400 и даже ND1000. Конструктивно они представляют из себя установленные в одной оправе два поляризационных фильтра, вращающиеся один относительно другого.[4]

    Солнечный фильтр[править | править код]

    Чрезвычайно плотный нейтральный фильтр, позволяющий без вреда для фотографа и фотоматериала снимать Солнце, электросварку, ядерный взрыв и другие явления, значительно превышающие по яркости обычные предметы. Используются плотности от ND400 и выше — для фотосъёмки, и более плотные — для визуальных наблюдений. Бывают стеклянные поглощающие и плёночные отражающие фильтры. В фототехнике популярны стеклянные фильтры в стандартной резьбовой оправе, накручивающиеся на объектив, а в любительской астрономии часто используются плёночными фильтрами «Baader AstroSolar», оправу для которого, как правило, делают из подручных средств, или используют корпус другого светофильтра.

    Градиентный фильтр[править | править код]

    Выравнивает яркость сцены, притемняя или меняя цвет части изображения. Обычно служит для компенсации избыточной яркости неба и для получения различных художественных эффектов. Также применяется термин «Оттенённый светофильтр».

    Спектральные (цветные)[править | править код]
    Ультрафиолетовые[править | править код]

    Ультрафиолетовый блокирующий фильтр (бесцветный фильтр) — предназначен для снижения воздействия ультрафиолетовой части спектра в горных, высотных и иных аналогичных условиях съёмки. Актуален только в случае, если объектив пропускает ультрафиолетовую часть спектра.

    Ультрафиолетовый пропускающий фильтр — для специальных съёмок. Применяется в научных исследованиях.

    Инфракрасные[править | править код]

    Инфракрасный пропускающий фильтр — пропускает инфракрасную часть спектра, задерживая все остальные части спектра.

    Инфракрасный блокирующий фильтр — применяется, как правило, в системах, оптика которых не рассчитана на работу с инфракрасными длинами волн, и поэтому создающих не резкие изображения.

    Корректирующие[править | править код]

    Корректирующие фильтры применяются в чёрно-белой фотографии; «жёлтый фильтр», «жёлто-зелёный фильтр», «оранжевый фильтр» и «красный фильтр» в разной степени демпфируют синюю часть спектра и делают изображение более контрастным. «Голубой фильтр» обладает противоположными свойствами.

    • Конверсионный фильтр — общее название группы фильтров, служащих для преобразования (конверсии) спектра
      • Для цветной фотографии применяются светофильтры всевозможных цветовых оттенков. Например, «красно-коричневые фильтры» и «синие фильтры» — для создания эффекта искусственного освещения при дневном свете, или эффекта дневного света — при искусственном освещении.
      • Флуоресцентный фильтр — специальный корректирующий светофильтр, приводящий освещение лампами дневного света к балансу, близкому к лампам накаливания.
      • Конверсионные фильтры для фотографирования при свете ламп накаливания на цветную фотоплёнку, предназначенную для солнечного освещения и наоборот.
    Мозаичные[править | править код]

    Мозаичный фильтр — светофильтр, состоящий из большого числа элементов разных цветов, расположенных в определённом порядке. Применяется при получении пробного цветного отпечатка, по которому определяется комбинация корректирующих субтрактивных светофильтров[5].

    В цифровой фотографии цветные светофильтры используются реже, так как последующая обработка изображения на компьютере позволяет получить практически идентичные их применению результаты.

    Эффектные[править | править код]

    Имеется множество фильтров, которые в процессе фотографирования производят различные световые эффекты на изображении. Например, светящиеся короны вокруг источников света или сверкающие в различных местах звёзды. Имеются различные цветные фильтры, которые изменяют цветовые переходы и соотношение цветов.

    • Туманные — создают эффект дымки, тумана. Понижают контраст и насыщенность цвета
    • Диффузные (софт-фильтр) — снижают резкость. Изготавливаются:
      • Рефракционные. Простейший вариант — вазелин на стекле
      • Дифракционные. Большое количество тонких штрихов, нанесённых на стекло
    • Звёздные — превращают изображения точечных источников света и ярких бликов в «звёзды». Обычно используют явление дифракции. Обозначаются по числу лучей. Изготавливаются нанесением на стекло нескольких групп параллельных прямолинейных штрихов, создающих дифракционную картину. Число образуемых лучей всегда вдвое больше числа групп штрихов. Некоторые фильтры носят отдельные названия:
      • Солнечные (эффектные) — восьмилучевые
      • Астроиды — четырёхлучевые
    • Радужные — образуют гало или радужное пятно дифракционного происхождения вокруг изображений точечных источников света.
    • Цветные и многоцветные — изменяют цветовое решение снимаемой сцены или её части
    • Множительные призмы — создают дублированное изображение
    • Синтезированные голографические фильтры — голографическое изображение оптической системы является оптической системой. Однако помимо съёмки существующих оптических систем, можно рассчитать технически не реализуемую в веществе оптическую систему, после чего синтезировать голограмму такой системы и напечатать такую голограмму (например, отштамповать её на прозрачном пластике). Таким образом изготавливаются «коронные», «спиральные» фильтры, результатом применения которых является создание определённой формы (не реализуемой никакими другими фильтрами)вокруг изображений источников света. В строго математическом смысле, звёздные фильтры являются частным случаем синтезированных голографических.
    • Поляризационные — см. ниже
    Насадочные линзы[править | править код]

    Из-за одинакового способа применения и закрепления на объективе к съёмочным светофильтрам часто относят насадочные линзы:

    • Полулинза — закреплённая в поворотной оправе половинка положительной линзы. Создаёт эффект различного расстояния наводки на резкость для частей кадра. Как правило, применяется в макросъёмке для получения резкого изображения двух различных участков кадра, при невозможности достичь диафрагмированием необходимой глубины резко изображаемого пространства.
    • Макролинза — служит для макросъёмки, применяется в основном на аппаратах с несменной оптикой. Обозначается оптическая сила в диоптриях или фокусное расстояние.
    • Широкоугольный конвертер — насадка даёт эффект уменьшения фокусного расстояния.

    Светофильтры методов цветовоспроизведения[править | править код]

    Аддитивные фильтры[править | править код]

    Аддитивные светофильтры (лат. additivus — прибавляемый) — цветоделительные зональные светофильтры, выделяющие из исходного светового потока белого света трёх пространственно разделённых (с помощью других оптических элементов) потоков: синего, зелёного и красного. Любые цвета в пределах цветового охвата системы этих трёх фильтров могут быть получены смешиванием этих трёх потоков в различных пропорциях. Это смешивание называется Аддитивный синтез цвета. Обычно применяются абсорбционные фильтры, а также комбинации из абсорбционных и интерфереционных, для получения высокой точности цветопередачи. Аддитивные светофильтры — важная деталь осветительных систем проекционных телевизионных систем. Применяются в кинокопировальной технике и в специальных фотоувеличителях для цветной печати. С развитием цифровой фотографии широко применяются в CCD матрицах.

    Субтрактивные фильтры[править | править код]
    Фотоувеличитель «УПА-601» и корректирующие светофильтры для субтрактивной печати. СССР, 1981 год.

    В отличие от аддитивных фильтров, в которых первичными цветами являются красный, зелёный и синий, в субтрактивной модели (англ. subtractive лат. subtraho  — извлекаю) существуют три базовых цвета: жёлтый, пурпурный и голубой цвета (CMY). При «вычитании» пурпурного и голубого из нейтрального белого тона получается синий цвет; вычитание жёлтого и пурпурного даёт красный цвет, вычитание жёлтого и голубого — зелёный. Одновременно наложение всех трёх субтрактивных цветов даёт чёрный тон.

    Для цветной фотопечати субтрактивным методом выпускались наборы корректирующих светофильтров (в наборе 33 шт, по 11 светофильтров жёлтого, пурпурного и голубого цвета). Плотность светофильтров каждого цвета — от 5 до 100 %. Корректирующие субтрактивные светофильтры в фотоувеличителе вводились в световой поток между лампой накаливания и негативом. О применении корректирующих светофильтров см. Фотопечать.

    В конструкции цифровых фотоаппаратов[править | править код]

    • Зональные светофильтры для цветоделения. Являются частью массива цветных фильтров и обычно являются неотъемлемой частью матрицы.
    • АА-фильтр (англ. Antialiasing фильтр), называемый также «фильтр низких частот», «low-pass фильтр». Служит для устранения эффекта цветного муара, связанного с мозаичной структурой массива цветных фильтров. Обычно объединён с матрицей.
    • ИК-фильтр — интерференционный антиинфракрасный фильтр (IR high-pass), необходимый для устранения влияния на изображение невидимой инфракрасной части спектра. Обычно располагается в непосредственной близости от матрицы.

    Теплозащитные[править | править код]

    Тепловой фильтр, теплофильтр — избирательно поглощает или отражает инфракрасное излучение и пропускает с малыми потерями диапазон видимого света. Применяются в осветительной аппаратуре, в проекторах для защиты плёнки, а также при микрофотографии для защиты биологических объектов от нагревания. Ранее применялись слабо окрашенные голубые и зелёные абсорбционные фильтры (обозначение СЗС — синезелёное стекло для выпускавшихся в СССР). Удешевление производства значительно более эффективных интерференционных отражающих фильтров привело к их массовому применению.

    Классификация светофильтров по принципу действия[править | править код]

    Абсорбционные[править | править код]

    (лат. absorbeo — поглощаю). Обладают спектральной избирательностью, обусловленной различным поглощением различных участков спектра электромагнитного излучения. Наиболее массовые фильтры. Производятся на основе окрашенных оптических стёкол или органических веществ (например, из желатины).

    • Стеклянные фильтры отличаются стабильностью характеристик, высокой устойчивостью к температурным и иным воздействиям.
    • Желатиновые фильтры, несмотря на большее разнообразие оптических характеристик, механически непрочны, быстро выцветают, и потому намного менее распространены, чем стеклянные.
    • Пластмассовые фильтры находят применение благодаря намного большей лёгкости окраски и разнообразия получаемых свойств по сравнению со стеклянными. Они долговечнее желатиновых.
    • Жидкостные светофильтры — сосуды со стеклянными стенками, заполненные растворами красителей. Используются редко, в основном в научных исследованиях, при наличии у используемого вещества уникальных характеристик.

    Интерференционные[править | править код]

    Отражает одну и пропускает другую часть спектра падающего излучения, благодаря явлению многолучевой интерференции в тонких диэлектрических плёнках.

    Отражательные[править | править код]

    Действие отражательных фильтров основано на спектральной зависимости отражения непрозрачного материала. Преимуществом отражательного фильтра перед абсорбционными является единственность участвующей в оптической системе поверхности и отсутствии хроматических аберраций, вносимых преломляющими прозрачными средами.

    Поляризационные[править | править код]

    Поляризационные фильтры для фотографии бывают двух типов: с круговой поляризацией и с линейной. Назначение у них одно: отделить или наоборот выделить участки, богатые отражённым поляризованным светом. Например, можно отсеять яркие блики волн на воде, снимая дно, или снять пейзаж за окном без своего отражения в самом окне.

    • Линейная поляризация (Linear polarization). Линейные фильтры выполняют одну очень простую функцию — они пропускают только свет с поляризацией в одной плоскости. Фильтр можно поворачивать, выбирая плоскость, с поляризацией в которой свет будет проходить. То есть, на выходе линейного фильтра всегда линейно поляризованный свет. Это очень простые и недорогие фильтры, они отлично подойдут к старым неавтофокусным камерам без автоматического замера экспозиции, для современных зеркальных камер они не подходят. Если в камере используется полупрозрачное зеркало, например для автоэкспозиции ли автофокуса, поляризованный свет «обманет» датчики, снимок будет испорчен.
    • Круговая поляризация (Circular polarization). Бытует ошибочное мнение, что фильтр с круговой поляризацией пропускает только свет, поляризованный по кругу. Однако, смысл кругового поляризационного фильтра в том, что из любой поляризации он делает круговую. Это означает, что такой фильтр подходит ко всем камерам, и старым в том числе, позволяет корректно определять экспозицию и не мешает автофокусу работать. При этом ненужные блики будут задержаны абсолютно так же, как в простом фильтре с линейной поляризацией. Фильтр с круговой поляризацией сложнее линейного, поэтому дороже. С внешней стороны стоит обычный линейный фильтр, а с внутренней приклеена четвертьволновая пластинка, которая позволяет линейную поляризацию превращать в круговую.[6] Также следует отметить, что CPL-фильтр даёт «чистую» круговую поляризацию только при некоторой характерной длине волны (например для HOYA HRT 526 nm[7]), при которой оптическая разность хода между необыкновенным и обыкновенным лучами в волновой пластинке составляет ровно четверть длины волны. Для всех других длин волн этот фильтр будет давать эллиптическую поляризацию.[8][9]

    Дисперсные[править | править код]

    (от лат. dispersio — рассеяние) основаны на зависимости показателя преломления от длины волны. В сочетании с отражающими и/или интерфереционными фильтрами, а также растром часто служат для создания расщепляющих оптических систем — дихроических призм. Находят применение в современных мультимедийных проекторах, где являются основным инструментом разделения светового потока мощной лампы накаливания на три спектральных диапазона. Применяются в качестве эффектных фильтров для получения радужных изображений.

    Классификация по типу выделяемой части спектра[править | править код]

    Узкополосные[править | править код]

    Односторонние[править | править код]

    Двухсторонние[править | править код]

    Корректирующие[править | править код]

    Корректирующие, которые частично поглощают свет в одних участках спектра и пропускают в других. Например, фильтр BG34 снижает интенсивность излучения вольфрамовой галогенной лампы в районе 600 нм, пропуская при этом все излучение в красной и синей областях, где чувствительность детектора ниже.

    Классификация по конструктивному исполнению[править | править код]

    Одиночные фильтры[править | править код]

    Круглые фильтры в оправе с винтовым или байонетным креплением.

    Системы фильтров[править | править код]

    Компендиум (компаундер) — держатель фильтров, основной характеристикой которого является размер вставляемого фильтра.

    Фильтры, определяющей характеристикой которых является размер и форма:

    • Квадратная — вставляются в компендиум и центрируется по середине.
    • Прямоугольная : градиентные оттеняющие.
    • Круглая: поляризационные, реже как альтернатива квадратным.

    Дополнительные элементы системы фильтров (бленды, переходные кольца и т. д.).

    • Хеймен Р. Светофильтры (Rex Hayman. Filters)
    • Ярославский Л. П., Мерзляков Н. С. Методы цифровой голографии. — М.: «Наука», 1977.
    • Фотокинотехника: Энциклопедия / Гл. ред. Е. А. Иофис. — М.: Советская Энциклопедия, 1981. — 447 с. — 100 000 экз.
    • Крис Вестон Фильтры в фотографии. Программные и оптические системы. — М.: «Арт-родник», 2010 г.

    Фильтр нижних частот — Википедия

    Материал из Википедии — свободной энциклопедии

    Фильтр ни́жних часто́т (ФНЧ) — электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза) и подавляющий частоты сигнала выше этой частоты. Степень подавления каждой частоты зависит от вида фильтра.

    В отличие от фильтра нижних частот (НЧ), фильтр верхних частот пропускает частоты сигнала выше частоты среза, подавляя низкие частоты.

    Реализация фильтров нижних частот может быть разнообразной, включая электронные схемы, программные алгоритмы, акустические барьеры, механические системы и т. д.

    В схемах пассивных аналоговых фильтров используют реактивные элементы, такие как катушки индуктивности и конденсаторы. Сопротивление реактивных элементов зависит от частоты сигнала, поэтому, комбинируя такие элементы, можно добиться усиления или ослабления гармоник с нужными частотами.

    Идеальный фильтр нижних частот[править | править код]

    Идеальный фильтр нижних частот (sinc-фильтр) полностью подавляет все частоты входного сигнала выше частоты среза и пропускает без изменений все частоты ниже частоты среза. Переходной зоны между частотами полосы подавления и полосы пропускания не существует. Идеальный фильтр нижних частот может быть реализован лишь теоретически с помощью умножения спектра (преобразования Фурье) входного сигнала на прямоугольную функцию в частотной области, или, что даёт тот же эффект, свёртки сигнала во временно́й области с sinc-функцией.

    Однако такой фильтр невозможно реализовать на практике, так как sinc-функция имеет ненулевые значения для всех моментов времени вплоть до бесконечности, и импульсная характеристика идеального фильтра не равна нулю для моментов времени меньших нуля. Его можно использовать только математически.

    Реальные фильтры для приложений реального времени могут лишь приближаться к идеальному фильтру.

    Фильтр Бесселя[править | править код]

    Один из наиболее распространённых типов линейных фильтров, отличительной особенностью которого является максимально гладкая групповая задержка (линейная фазо-частотная характеристика).

    Для звуковых волн твёрдый барьер играет роль фильтра нижних частот — например, в музыке, играющей в другой комнате, легко различимы басы, а высокие частоты отфильтровываются (звук «оглушается»). Точно так же ухом воспринимается музыка, играющая в закрытой машине.

    Электронные фильтры нижних частот используются для подавления пульсаций напряжения на выходе выпрямителей переменного тока, для разделения частотных полос в акустических системах, в системах передачи данных для подавления высокочастотных помех и ограничения спектра сигнала, а также имеют большое число других применений.

    Радиопередатчики используют ФНЧ для блокировки гармонических излучений, которые могут взаимодействовать с низкочастотным полезным сигналом и создавать помехи другим радиоэлектронным средствам.

    Механические низкочастотные фильтры часто используют в контурах АВМ непрерывных систем управления в качестве корректирующих звеньев.

    В обработке изображений низкочастотные фильтры используются для очистки картинки от шума и создания спецэффектов, а также при сжатии изображений.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *