Знак степени 1: Маленькие цифры ¹ ³ ⁺ ₄ ₇ ₌ – Возведение в степень — Википедия

Содержание

Возведение в степень — Википедия

Графики четырёх функций вида y=ax{\displaystyle y=a^{x}}, a{\displaystyle a} указано рядом с графиком функции

Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием a{\displaystyle a} и натуральным показателем b{\displaystyle b} обозначается как

ab=a⋅a⋅…⋅a⏟b,{\displaystyle a^{b}=\underbrace {a\cdot a\cdot \ldots \cdot a} _{b},}

где b{\displaystyle b} — количество множителей (умножаемых чисел)[1][К 1].

Например, 32=3⋅3=9;24=2⋅2⋅2⋅2=16{\displaystyle 3^{2}=3\cdot 3=9;\quad 2^{4}=2\cdot 2\cdot 2\cdot 2=16}

В языках программирования, где написание ab{\displaystyle a^{b}} невозможно, применяются альтернативные обозначения[⇨].

Возведение в степень может быть определено также для отрицательных[⇨], рациональных[⇨], вещественных[⇨] и комплексных[⇨] степеней[1].

Извлечение корня — одна из операций, обратных возведению в степень, она по известным значениям степени c=ab{\displaystyle c=a^{b}} и показателя b{\displaystyle b} находит неизвестное основание a=cb{\displaystyle a={\sqrt[{b}]{c}}}. Вторая обратная операция — логарифмирование, она по известным значениям степени c=ab{\displaystyle c=a^{b}} и основания a{\displaystyle a} находит неизвестный показатель b=logac{\displaystyle b=log_{a}c}. Задача нахождения числа по известному его логарифму (потенцирование, антилогарифм) решается с помощью операции возведения в степень[⇨]).

Существует алгоритм быстрого возведения в степень, выполняющий возведение в степень за меньшее, чем в определении, число умножений.

Запись an{\displaystyle a^{n}} обычно читается как «a в n{\displaystyle n}-й степени» или «a в степени n». Например, 104{\displaystyle 10^{4}} читается как «десять в четвёртой степени», 103/2{\displaystyle 10^{3/2}} читается как «десять в степени три вторых (или: полтора)».

Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, 102{\displaystyle 10^{2}} читается как «десять в квадрате», 103{\displaystyle 10^{3}} читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры. В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо a2{\displaystyle a^{2}}, a3{\displaystyle a^{3}} древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[2].

Основные свойства[править | править код]

Все приведенные ниже основные свойства возведения в степень выполняются для натуральных, целых, рациональных и вещественных чисел[3]. Для комплексных чисел, в силу многозначности комплексной операции, они выполняются только в случае натурального показателя степени[⇨].

Запись anm{\displaystyle a^{n^{m}}} не обладает свойством ассоциативности (сочетательности), то есть, в общем случае,(an)m≠a(nm){\displaystyle (a^{n})^{m}\neq a^{\left({n^{m}}\right)}} Например, (22)3=43=64{\displaystyle (2^{2})^{3}=4^{3}=64}, а 2(23)=28=256{\displaystyle 2^{\left({2^{3}}\right)}=2^{8}=256}. В математике принято считать запись anm{\displaystyle a^{n^{m}}} равнозначной a(nm){\displaystyle a^{\left({n^{m}}\right)}}, а вместо (an)m{\displaystyle (a^{n})^{m}} можно писать просто anm{\displaystyle a^{nm}}, пользуясь предыдущим свойством. Впрочем, некоторые языки программирования не придерживаются этого соглашения.

Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, ab≠ba{\displaystyle a^{b}\neq b^{a}}, например, 25=32{\displaystyle 2^{5}=32}, но 52=25.{\displaystyle 5^{2}=25.}

Таблица натуральных степеней небольших чисел[править | править код]

n n2 n3 n4 n5 n6 n7 n8 n9 n10
2 4 8 16 32 64 128 256 512 1024
3 9 27 81 243 729 2 187 6 561 19 683 59 049
4 16 64 256 1024 4 096 16 384 65 536 262 144 1 048 576
5 25 125 625 3125 15 625 78 125 390 625 1 953 125 9 765 625
6 36 216 1296 7 776 46 656 279 936 1 679 616 10 077 696 60 466 176
7
49 343 2401 16 807 117 649 823 543 5 764 801 40 353 607 282 475 249
8 64 512 4096 32 768 262 144 2 097 152 16 777 216 134 217 728 1 073 741 824
9 81 729 6561 59 049 531 441 4 782 969 43 046 721 387 420 489 3 486 784 401
10 100 1000 10 000 100 000 1 000 000 10 000 000 100 000 000 1 000 000 000 10 000 000 000

Целая степень[править | править код]

Операция обобщается на произвольные целые числа, включая отрицательные и ноль[4]::

az={az,z>01,z=0,a≠01a|z|,z<0,a≠0{\displaystyle a^{z}={\begin{cases}a^{z},&z>0\\1,&z=0,a\neq \;0\\{\frac {1}{a^{|z|}}},&z<0,a\neq \;0\end{cases}}}

Результат не определён при a=0{\displaystyle a=0} и z⩽0{\displaystyle z\leqslant 0}.

Рациональная степень[править | править код]

Возведение в рациональную степени p/q,{\displaystyle p/q,} где p{\displaystyle p} — целое число, а q{\displaystyle q} — натуральное, определяется следующим образом[4]:

apq=(aq)p{\displaystyle a^{p \over q}=({\sqrt[{q}]{a}})^{p}}.

Результат не определён при a=0{\displaystyle a=0} и p/q⩽0.{\displaystyle p/q\leqslant 0.} Для отрицательных a{\displaystyle a} в случае нечётного p{\displaystyle p} и чётного q{\displaystyle q} в результате вычисления степени получаются комплексные числа.

Следствие: an=a1/n.{\displaystyle {\sqrt[{n}]{a}}=a^{1/n}.} Таким образом, понятие рациональной степени объединяет возведение в целочисленную степень и извлечение корня в единую операцию.

Вещественная степень[править | править код]

Если a⩾0,r{\displaystyle a\geqslant 0,r} — вещественные числа, причём r{\displaystyle r} — иррациональное число, возможно определить ar{\displaystyle a^{r}} следующим образом: поскольку любое вещественное число можно приблизить, сверху и снизу, двумя рациональными числами, то есть можно подобрать для r{\displaystyle r} рациональный интервал [p,q]{\displaystyle [p,q]} с любой степенью точности, то общая часть всех соответствующих интервалов [ap,aq]{\displaystyle [a^{p},a^{q}]} состоит из одной точки, которая и принимается за ar{\displaystyle a^{r}}.

Полезные формулы:

xy=ayloga⁡x{\displaystyle x^{y}=a^{y\log _{a}x}}
xy=eyln⁡x{\displaystyle x^{y}=e^{y\ln x}}
xy=10ylg⁡x{\displaystyle x^{y}=10^{y\lg x}}

Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции xy{\displaystyle x^{y}}, и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.

Комплексная степень[править | править код]

Возведение комплексного числа в натуральную степень выполняется обычным умножением, и результат однозначен (см. формулу Муавра). Основой для более общего определения комплексной степени служит экспонента ez{\displaystyle e^{z}}, где e{\displaystyle e} — число Эйлера, z=x+iy{\displaystyle z=x+iy} — произвольное комплексное число[5].

Определим комплексную экспоненту с помощью такого же ряда, как и вещественную:

ez=1+z+z22!+z33!+z44!+⋯.{\displaystyle e^{z}=1+z+{\frac {z^{2}}{2!}}+{\frac {z^{3}}{3!}}+{\frac {z^{4}}{4!}}+\cdots .}

Этот ряд абсолютно сходится для любого комплексного z,{\displaystyle z,} поэтому его члены можно как угодно перегруппировывать. В частности, отделим от него часть для eiy{\displaystyle e^{iy}}:

eiy=1+iy+(iy)22!+(iy)33!+(iy)44!+⋯=(1−y22!+y44!−y66!+⋯)+i(y−y33!+y55!−⋯).{\displaystyle e^{iy}=1+iy+{\frac {(iy)^{2}}{2!}}+{\frac {(iy)^{3}}{3!}}+{\frac {(iy)^{4}}{4!}}+\cdots =\left(1-{\frac {y^{2}}{2!}}+{\frac {y^{4}}{4!}}-{\frac {y^{6}}{6!}}+\cdots \right)+i\left(y-{\frac {y^{3}}{3!}}+{\frac {y^{5}}{5!}}-\cdots \right).}

В скобках получились известные из вещественного анализа ряды для косинуса и синуса, и мы получили формулу Эйлера:

ez=exeyi=ex(cos⁡y+isin⁡y){\displaystyle e^{z}=e^{x}e^{yi}=e^{x}(\cos y+i\sin y)}

Общий случай ab{\displaystyle a^{b}}, где a,b{\displaystyle a,b} — комплексные числа, определяется через представление a{\displaystyle a} в показательной форме: a=rei(θ+2πk){\displaystyle a=re^{i(\theta +2\pi k)}} согласно определяющей формуле[5]:

ab=(eLn⁡(a))b=(eln⁡(r)+i(θ+2πk))b=eb(ln⁡(r)+i(θ+2πk)).{\displaystyle a^{b}=(e^{\operatorname {Ln} (a)})^{b}=(e^{\operatorname {ln} (r)+i(\theta +2\pi k)})^{b}=e^{b(\operatorname {ln} (r)+i(\theta +2\pi k))}.}

Здесь Ln{\displaystyle \operatorname {Ln} } — комплексный логарифм, ln{\displaystyle \ln } — его главное значение.

При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно[5]. Неучёт этого обстоятельства может привести к ошибкам. Пример: возведём известное тождество e2πi=1{\displaystyle e^{2\pi i}=1} в степень i.{\displaystyle i.} Слева получится e−2π,{\displaystyle e^{-2\pi },} справа, очевидно, 1. В итоге: e−2π=1,{\displaystyle e^{-2\pi }=1,} что, как легко проверить, неверно. Причина ошибки: возведение в степень i{\displaystyle i} даёт и слева, и справа бесконечное множество значений (при разных k{\displaystyle k}), поэтому правило (ab)c=abc{\displaystyle \left(a^{b}\right)^{c}=a^{bc}} здесь неприменимо. Аккуратное применение формул определения комплексной степени даёт слева и справа e−2πk;{\displaystyle e^{-2\pi k};} отсюда видно, что корень ошибки — путаница значений этого выражения при k=0{\displaystyle k=0} и при k=1.{\displaystyle k=1.}

Потенцирование (от нем. potenzieren[К 2]) — нахождение числа по известному значению его логарифма, то есть решение уравнения loga⁡x=b{\displaystyle \log _{a}x=b}. Из определения логарифма вытекает, что x=ab{\displaystyle x=a^{b}}, таким образом, возведение a{\displaystyle a} в степень b{\displaystyle b} может быть названо другими словами «потенцированием b{\displaystyle b} по основанию a{\displaystyle a}».

Антилогарифм — вычислительная операция нахождения числа по известному значению логарифма, как самостоятельное понятие используется в логарифмических таблицах, логарифмических линейках, микрокалькуляторах. Вычисление антилогарифма по основанию a{\displaystyle a} для числа b{\displaystyle b} соответствует возведению в степень ab.{\displaystyle a^{b}.}

Разновидности[править | править код]

Поскольку в выражении xy{\displaystyle x^{y}} используются два символа (x{\displaystyle x} и y{\displaystyle y}), то его можно рассматривать как одну из трёх функций.

  • Функция переменной x{\displaystyle x} (при этом y{\displaystyle y} — постоянная-параметр). Такая функция называется степенной. Обратная функция — извлечение корня.
  • Функция переменной y{\displaystyle y} (при этом x{\displaystyle x} — постоянная-параметр). Такая функция называется показательной (частный случай — экспонента). Обратная функция — логарифм.
  • Функция двух переменных f(x,y)=xy.{\displaystyle f(x,y)=x^{y}.} Отметим, что в точке (0,0){\displaystyle (0,0)} эта функция имеет неустранимый разрыв. В самом деле, вдоль положительного направления оси X,{\displaystyle X,} где y=0,{\displaystyle y=0,} она равна единице, а вдоль положительного направления оси Y,{\displaystyle Y,} где x=0,{\displaystyle x=0,} она равна нулю.

Ноль в степени ноль[править | править код]

Выражение 00{\displaystyle 0^{0}} (ноль в нулевой степени) многие учебники считают неопределённым и лишённым смысла, поскольку, как указано выше, функция f(x,y)=xy{\displaystyle f(x,y)=x^{y}} в точке (0, 0) разрывна. Некоторые авторы предлагают принять соглашение о том, что это выражение равно 1. В частности, тогда разложение в ряд экспоненты:

ex=1+∑n=1∞xnn!{\displaystyle e^{x}=1+\sum _{n=1}^{\infty }{x^{n} \over n!}}

можно записать короче:

ex=∑n=0∞xnn!.{\displaystyle e^{x}=\sum _{n=0}^{\infty }{x^{n} \over n!}.}

Следует предостеречь, что соглашени

Конспект "Степени. Свойства степеней" - УчительPRO

Степени. Свойства степеней.

Ключевые слова конспекта: степень с натуральным показателем, основание степени, показатель степени, возведение в степень, дисперсия, умножение и деление степеней, свойства степеней.



Произведение 7 • 7 • 7 • 7 • 7 записывают короче: 75. Выражение вида 75 называют пятой степенью числа 7 (читают: «семь в пятой степени»). В записи 75 число 7, которое означает повторяющийся множитель, называют основанием степени, а число 5, показывающее, сколько раз этот множитель повторяется, называют показателем степени.

Умножим 75 на 73:
75 • 73 = (7 • 7 • 7 • 7 • 7) • (7 • 7 • 7) = 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 = 78.
Показатель степени увеличился на 3. Естественно считать, что 7 = 71. Вообще считают, что первой степенью числа является само число. Например, 181 = 18, 1041 = 104.

Степень с натуральным показателем

✅ Определение. Степенью числа а с натуральным показателем n, большим 1, называют выражение аn, равное произведению n множителей, каждый из которых равен а.
Степенью числа а с показателем 1 называют выражение а1, равное а.

По определению

Запись аn читается так: «а в степени n» или «n-я (энная) степень числа а». Для второй и третьей степеней числа используют специальные названия: вторую степень числа называют квадратом, а третью степень — кубом.

Возведение в степень

Нахождение n-й степени числа а называют возведением в n-ю степень.

 Пример 1. Возведём число -3 в четвёртую и пятую степени:
 (-3)4 = (-3) • (-3) • (-3) • (-3) = 81;
 (-3)5 = (-3) • (-3) • (-3) • (-3) • (-3) = -243.

Из свойств умножения следует, что:

  •  при возведении нуля в любую степень получается нуль;
  •  при возведении положительного числа в любую степень получается положительное число;
  •  при возведении отрицательного числа в степень с чётным показателем получается положительное число, а при возведении отрицательного числа в степень с нечётным показателем — отрицательное число.

 Пример 2. Возведём число 6,1 в седьмую степень, воспользовавшись калькулятором.  Для этого надо выполнить умножение:
 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1.
Калькулятор позволяет выполнять возведение в степень проще, не повторяя основание степени и знак умножения. Для того чтобы возвести число 6,1 в седьмую степень, достаточно ввести число 6,1, нажать клавишу УМНОЖИТЬ и шесть раз нажать клавишу РАВНО . Получим, что 6,17 = 314274,28.

При вычислении значений числовых выражений, не содержащих скобки, принят следующий порядок действий: сначала выполняют возведение в степень, затем умножение и деление, далее сложение и вычитание.

 Пример 3. Найдём значение выражения -62 + 64 : (-2)5.  Последовательно находим:

1) 62 = 36;
2) (–2)5 = –32;
3) 64 : (–32) = –2;
4) –36 + (–2) = –38.

 Пример 4. Найдём множество значений выражения 5 • (–1)n + 1 + 2, где n N.
Если n — нечётное число, то (-1)n + 1 = 1; тогда 5 • (-1)n + 1 + 2 = 5 • 1 + 2 = 7.
Если n — чётное число, то (-1)n + 1 = -1; тогда  5 • (-1)n + 1 + 2 = 5 • (-1) + 2 = -5 + 2 = -3.
Множество значений данного выражения: {-3; 7}.

В рассмотренном примере было указано, что n  N. Условимся в дальнейшем такое указание опускать и считать, что если показатель степени содержит переменную, то значениями этой переменной являются натуральные числа.

Дисперсия

Степень с натуральным показателем широко используется в естествознании для вычисления различных характеристик. Например, в статистике, для того чтобы узнать, как числа некоторой выборки расположены по отношению к среднему арифметическому этой выборки, используют отклонения, их квадраты и среднее арифметическое квадратов отклонений — дисперсию

.

 Пример 5. Дана выборка: 4, 6, 7, 8, 10. Среднее арифметическое этой выборки равно 7. Тогда отклонения вариант данной выборки от среднего арифметического равны: 4 – 7 = –3, 6 – 7 = –1, 7 – 7 = 0,8 – 7 = 1, 10 – 7 = 3, т. е. мы получили ещё один набор чисел — отклонения каждой варианты выборки от среднего арифметического. По новой выборке (–3; –1; 0; 1; 3) можно судить о том, насколько близки к среднему арифметическому числа исходного набора. Но поскольку сумма отклонений равна нулю, то и среднее арифметическое этой новой выборки также равно нулю. Поэтому для дальнейших исследований исходного набора находят квадраты отклонений и их среднее арифметическое

Полученное число и есть дисперсия исходной выборки.

Умножение степеней

Представим произведение степеней а5 и а2 в виде степени:
а5 • а2 = (а • а • а • а • а) • (а • а) = а • а • а • а • а • а • а = а7.
Мы получили степень с тем, же основанием и показателем, равным сумме показателей множителей. Подмеченное свойство выполняется для произведения любых двух степеней с одинаковыми основаниями.

Если а — произвольное число, m и n — любые натуральные числа, то аm • аn = аm+ n

Докажем это. Из определения степени и свойств умножения следует, что

Доказанное свойство называется основным свойством степени. Оно распространяется на произведение трёх и более степеней. Это нетрудно показать с помощью таких же рассуждений.

Из основного свойства степени следует правило:

  • чтобы перемножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели степеней сложить.
Деление степеней

Представим теперь в виде степени частное степеней а8 и а3, где а ≠ 0. Так как а3 • а5 = а8, то по определению частного а8 : а3 = а5.

Мы получили степень с тем же основанием и показателем, равным разности показателей делимого и делителя. Такое свойство выполняется для частного любых степеней с одинаковыми основаниями, не равными нулю, у которых показатель делимого больше показателя делителя.

Если а — произвольное число, не равное нулю, m и n — любые натуральные числа, причём m > n, то аm : аn = аm — n, где а ≠ 0, m ≥ n

Докажем это. Умножим аm — n на аn, используя основное свойство степени:
am – n • an = a(m – n) + n = am – n + n = am

Из доказанного свойства следует правило:

  • чтобы выполнить деление степеней с одинаковыми основаниями, надо основание оставить тем же, а из показателя делимого вычесть показатель делителя.
Степень с нулевым показателем

Мы рассматривали степени с натуральными показателями. Введём теперь понятие степени с нулевым показателем.

✅ Определение. Степенью числа а, где а ≠ 0, с нулевым показателем называется выражение а0, равное 1.

Например, 50 = 1;   (–6,3)0 = 1. Выражение 0

0 не имеет смысла.

 

Степени. Свойства степеней


Это конспект по математике на тему «Степени. Свойства степеней». Выберите дальнейшие действия:

Знаки классности - мастер, 1, 2, 3 степени, знак СССР в World of Tanks

Achievement_markOfMastery4.png В обновлении 7.2 в список достижений World of Tanks добавились знаки классности. Знаки классности присуждаются игроку за получение значительного количества опыта за бой. Знак классности будет присвоен игроку в том случае, если он сможет получить больше опыта, чем большинство игроков на той же технике за последние 7 дней. Награда и знаки классности СССР выдаются сразу же после окончания боя. Achievement_markOfMastery4.png Знак классности «Мастер». Выдаётся игроку, который по количеству набранного опыта вошёл в 1% лучших игроков за 7 дней. Achievement_markOfMastery3.png
Знак классности 1-й степени. Выдаётся игроку, количество набранного опыта которого превышает средний результат лучших 5% игроков за 7 дней. Achievement_markOfMastery2.png Знак классности 2-й степени. Выдаётся игроку, количество набранного опыта которого превышает средний результат лучших 20% игроков за 7 дней. Achievement_markOfMastery1.png Знак классности 3-й степени. Выдаётся игроку, количество набранного опыта которого превышает средний результат лучших 50% игроков за 7 дней.


Некоторые особенности и условия получения знаков классности:

  • Опыт рассматривается без учёта премиум аккаунта и двойного/тройного/пятикратного коэффициента.
  • Знаки классности не отнимаются и не понижаются. Если игрок сыграл в следующий раз хуже — знак классности не понизится.
  • При получении более высокого знака классности он добавляется вместо более низкого.
  • Если вы получили знак «Мастер», то другие знаки классности на этом танке присваиваться не будут.
  • Знаки классности не выдаются за опыт, полученный до выхода обновления 7.2.
  • Знаки классности отображаются возле каждого танка в личной статистике игрока.
  • Игроки проигравшей команды, получившие медаль из списка "достойное сопротивление", получают дополнительный опыт, который не отображается в послебоевой статистике, но учитывается при выдаче знака классности.
Пример
За последние 7 дней у 5% лучших игроков на танке БТ-7 высший результат составил от 600 и более единиц опыта за бой. Если на этом танке получено 610 опыта без премиум-аккаунта за бой, значит требования для присвоения «Первого класса» выполнены. Если же получено 750 опыта с учетом премиум-аккаунта (который прибавляет еще 50% опыта), то реальное значение составит 500 единиц опыта — требования для получения знака «Первого класса» не выполнены.

Степень -1 | Алгебра

Как возвести число в степень -1?

По определению степени с отрицательным показателем,

   

Например,

   

   

   

   

Число в минус первой степени и данное число являются взаимно обратными числами.

Чтоьы возвести обыкновенную дробь в степень -1, нужно ее числитель и знаменатель поменять местами («перевернуть»):

   

Например,

   

   

   

   

Чтобы возвести в степень минус 1 смешанное число, его предварительно нужно перевести в неправильную дробь. Например,

   

   

   

   

Чтобы возвести в минус первую степень десятичную дробь, её сначала лучше перевести в обыкновенную:

   

   

   

   

Правила ввода математических выражений

Ввод чисел:

Целые числа вводятся обычным способом, например: 4; 18; 56
Для ввода отрицательного числа необходимо поставить знак минус: -19; -45; -90
Рациональные числа вводятся с использованием символа /, например: 3/4;-5/3;5/(-19)

Вещественные числа вводятся с использованием точки в качестве разделителя целой и дробной частей: 4.5;-0.4

Ввод переменных и констант:

Переменные и константы вводятся латинскими буквами, например: x; y; z; a; b.
Константы π и e вводятся как pi и e - соответственно.
Символ бесконечности ∞ вводится двумя маленькими латинскими буквами oo или словом inf.
Соответственно, плюс бесконечность задается как +oo, и минус бесконечность как -oo.

Сумма и разность:

Сумма и разность задаются при помощи знаков + и - соответственно, например: 3+a; x+y; 5-4+t; a-b+4; ВНИМАНИЕ! Никаких пробелов между операндами быть не должно, например ввод: x + a - неправильный, правильно вводить так: x+a - без пробелов.

Умножение:

Умножение задается знаком *, например: 3*t; x*y; -5*x.
ВНИМАНИЕ! Ввод знака * необходим всегда, т.е. запись типа: 2x - недопустима . Следует всегда использовать знак * , т.е правильная запись: 3*x.

Деление:

Деление задается знаком /, например: 15/a; y/x;.

Степень:

Степень задается знаком ^, например: x^2; 4^2; y^(-1/2).

Приоритет операций:

Для указания (или изменения) приоритета операций необходимо использовать скобки (), например: (a+b)/4 - тут вначале будет произведено сложение a+b, а потом сумма разделится на 4, тогда как без скобок: - сначала b разделится на 4 и к полученному прибавится a. ВНИМАНИЕ! В непонятных случаях лучше всегда использовать скобки для получения нужного результата, например: 2^4^3 - неясно как будет вычислено это выражение: cначала 2^4, а затем результат в степень 3, или сначала 4^3=64, а затем 2^64? Поэтому, в данном случае, необходимо использовать скобки: (2^4)^3 или 2^(4^3) - смотря что нужно.
Также распространенной ошибкой является запись вида: x^3/4 - непонятно: вы хотите возвести x в куб и полученное выражение разделить на 4, или хотите возвести x в степень 3/4? В последнем случае необходимо использовать скобки: x^(3/4).

Ввод функций:

Функции вводятся с использованием маленьких латинских букв: sin; cos; tan; log.
ВНИМАНИЕ! Аргумент функции всегда берется в скобки (), например: sin(4); cos(x); log(4+y).
Запись типа: sin 4; cos x; log 4+y - недопустима. Правильная запись: sin(4); cos(x); log(4+y).
Если необходимо возвести функцию в степень, например: синус x и все это в квадрате, это записывается вот так: (sin(x))^2. Если необходимо возвести в квадрат аргумент, а не функцию (т.е синус от x^2), тогда это выглядит вот так: sin(x^2). Запись типа: sin^2 x - недопустима.

Список поддерживаемых функций
Функция Описание Пример ввода Примечания
квадратный корень sqrt(x) или x^(1/2) -
корень n-ой степени x^(1/n) -
log(x) или ln(x) натуральный логарифм log(x) или ln(x) -
log10(x) или lg(x) десятичный логарифм lg(x) -
loga(b) произвольный логарифм lg(b)/lg(a) -
ex экспонента exp(x) -
sin(x) синус sin(x) -
cos(x) косинус cos(x) -
tan(x) или tg(x) тангенс tan(x) или tg(x) -
cot(x) или ctg(x) котангенс cot(x) или ctg(x) -
sec(x) секанс sec(x) sec(x)=1/cos(x)
csc(x) или cosec(x) косеканс csc(x) или cosec(x) csc(x)=1/sin(x)
sin−1(x) или arcsin(x) арксинус arcsin(x) или asin(x) -
cos−1(x) или arccos(x) арккосинус arccos(x) или acos(x) -
tan−1(x) или arctan(x) арктангенс arctg(x) или atan(x) -
cot−1(x) или arcctg(x) арккотангенс arcctg(x) или acot(x) -
sec−1(x) или arcsec(x) арксеканс arcsec(x) или asec(x) arcsec(x)=arccos(1/x)
csc−1(x) или arccosec(x) арккосеканс arccosec(x) или acsc(x) arcsec(x)=arcsin(1/x)
sinh(x) гиперболический синус sinh(x) sinh(x)=(exp(x)-exp(-x))/2
cosh(x) гиперболический косинус cosh(x) cosh(x)=(exp(x)+exp(-x))/2
tanh(x) гиперболический тангенс tanh(x) tanh(x)=sinh(x)/cosh(x)
coth(x) гиперболический котангенс coth(x) coth(x)=cosh(x)/sinh(x)
sech(x) гиперболический секанс sech(x) sech(x)=1/cosh(x)
csch(x) гиперболический косеканс cosech(x) или csch(x) csch(x)=1/sinh(x)
sinh−1(x) или arcsinh(x) гиперболический арксинус arcsinh(x) или asinh(x) -
cosh−1(x) или arccosh(x) гиперболический арккосинус arccosh(x) или acosh(x) -
tanh−1(x) или arctanh(x) гиперболический арктангенс arctanh(x) или atanh(x) -
coth−1(x) или arccoth(x) гиперболический арккотангенс arccoth(x) или acoth(x) -
sech−1(x) или arcsech(x) гиперболический арксеканс arcsech(x) или asech(x) arcsech(x)=arccosh(1/x)
csch−1(x) или arccsch(x) гиперболический арккосеканс arccsch(x) или acsch(x) arccsch(x)=arcsinh(1/x)


Обобщение понятия степени и решение примеров со степенями

Здравствуйте. Многие ученики испытывают сложности при решении заданий, в которых встречаются выражения с корнями. В данной статье я попытаюсь обобщить материал по темам "Радикал" и "Степень". Покажу как решать некоторые задания. Если у Вас во время прочтения статьи появятся вопросы, Вы можете записаться ко мне на занятие, я с радостью помогу Вам во всем разобраться, помогу с решением именно Ваших задач! 

1. Свойства степеней и корней

Степенью числа а с натуральным показателем n называется произведение n множителей, каждый из которых равняется а.
Степень числа а с показателем обозначают an, например:

В общем случае при > 1  имеем

Число a называется основой степени, число n — показателем степени.

Приведем основные свойства действий со степенями.

Приведенные свойства обобщаются для любых показателей степени

Часто в вычислениях используются степени с рациональным показателем. При этом удобным оказалось такое обозначение:

Корнем n- ой степени из числа а называется число b, n- я степень которого равняется a:

Корень также называется радикалом.

Корень нечетной степени n всегда существует. Корень четной степени 2из отрицательного числа не существует. Существуют два противоположных числа, которые являются корнями четной степени из положительного числа а > 0. Положительный корень n- ой степени из положительного числа называют арифметическим корнем.

Из формул (3), (4) вытекают такие свойства радикалов

Если степень корня n = 2, то показатель корня обычно не пишется. 

Пример 1.1. Найти значение выражения

Подкоренное выражение разложим на простые множители:

Пример 1.2. Упростить выражение

Имеем: 

 

Пример 1.3. Извлечь корень 

Имеем: 

Пример 1.4. Упростить выражение 

Поскольку при

2. Действия с радикалами

1) Преобразование корня по формуле  называется внесением множителя под знак радикала.

Пример 2.1. Внести множитель под знак корня 5√2.

Исходя из формулы (7) получим 

Пример 2.2. Внести множитель под знак радикала xy  при x< 0.

Имеем равенство 

2) Преобразование корня исходя из формулы  называется вынесением множителя из-под знака радикала.

Пример 2.3. Вынести множитель из-под знака корня в выражении  

Получим: 

Пример 2.4. Вынести множитель из-под знака корня

Имеем: 

Пример 2.5. Вынести множитель из-под знака корня:

Радикалы вида , где a, b — рациональные числа, называются подобными. Их можно прибавлять и отнимать:

Пример 2.6. Упростить:

Пример 2.7. Сложить радикалы:

Пример 2.8. Выполнить действие:

Заметим, что равенство  не выполняется. В этом можно убедиться на таком примере:

Приведем примеры умножения радикалов.

Пример 2.9.

Аналогично освобождаются от кубических иррациональностей в знаменателе:

Рассмотрим более сложные примеры рационализации знаменателей:

Чтобы перемножить радикалы с разными степенями, их сначала превращают в радикалы с одинаковыми степенями.

Пример 2.10. Перемножим радикалы:

Во время умножения радикалов можно использовать формулы сокращенного умножения. Например:

Если радикалы находятся в знаменателе дроби, то, используя свойства радикалов, можно избавиться от иррациональности. 

Пример 2.11. Рационализируем знаменатели дробей

Выражения  называются сопряженными. Произведение сопряженных выражений не содержит радикалов:

Это свойство используется для рационализации знаменателей.

Пример 2.12. Избавиться от иррациональности в знаменателе:

Избавимся от иррациональности в знаменателе дроби:

3. Вычисление иррациональных выражений

С помощью свойств корней можно упрощать и вычислять иррациональные выражения. 

Пример 3.1. Вычислить

Выполним последовательно действия:

Пример 3.2. Вычислить:

Выполним действия.

Часто используется формула двойного радикала:

Пример 3.3. Исходя из формулы (8) находим:

Пример 3.4. Вычислить

Исходя из формулы (8) находим:

Окончательно получаем:

Аналогично вычисляются кубические корни. Имеем:

Возводим обе части равенства в куб:

Сравнивая выражения при с, получаем однородную систему уравнений:

Поделив уравнение почленно, приходим к уравнению для = y/x:

Пример 3.5. Вычислить значение радикала

После возведения в куб уравнения приходим к системе уравнений:

Поделив почленно первое уравнение на второе, получим уравнение для z= y/x:

По схеме Горнера находим корень z = - ½

Из системы уравнений и уравнения y/x = - ½ находим x = 2= -1. Итак, 

Пример 3.6. Вычислить .

Возьмем .

Возведя обе части уравнения в куб, получаем откуда вытекает система уравнений

Система уравнений имеет очевидное решение x= 1, y= 1.

Поэтому .

Вычисляем радикал

Окончательно имеем = - 1.

Пример 3.7. Вычислить

Поскольку 

Дальше имеем:

Итак, = - 2.

Пример 3.8. Вычислить

Возведем уравнение в куб, воспользовавшись равенством .

Получили для x кубическое уравнение


или x3 – 3x – 18 = 0,

имеет корни 

Во множестве действительных чисел имеем корень = 3.

4. Оценки для радикалов

Если 

Это неравенство можно использовать для доведения неровностей, которые содержат радикалы.

Пример 4.1. Доказать, что .

Возведя неравенство в шестую степень, получим очевидное неравенство

Можно приводить радикалы к одной и то й же самой степени :

Пример 4.2. Оценим  .

Поскольку

 

При преобразовании неравенств можно использовать символ V, понимая под ним знаки « > », « < », или « ». 

Пример 4.3. Какое число больше 

.

Поскольку 

На этом все. Напоминаю, что Вы можете записываться ко мне на занятия в расписании, я с радостью помогу Вам с любыми вопросами по математике или высшей математике.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *