Знак степени 1: ⁰ — Надстрочный нуль: U+2070

⁰ — Надстрочный нуль: U+2070

маленькая цифра

U+2070

Нажмите, чтобы скопировать и вставить символ

Техническая информация

Название в ЮникодеSuperscript Zero
Номер в Юникоде

U+2070

HTML-код

⁰

CSS-код

\2070

РазделНадстрочные и подстрочные знаки
Версия Юникода:1. 1 (1993)

Значение символа

Надстрочный нуль. Надстрочные и подстрочные знаки.

Символ «Надстрочный нуль» был утвержден как часть Юникода версии 1.1 в 1993 г.

Свойства

Версия1.1
БлокНадстрочные и подстрочные знаки
Тип парной зеркальной скобки (bidi)Нет
Композиционное исключениеНет
Изменение регистра2070
Простое изменение регистра2070

Похожие символы

  • Верхний индекс шесть

  • Верхний индекс семь

  • Верхний индекс пять

  • Верхний индекс латинская строчная. ..

  • Верхний индекс четыре

  • ³

    Верхний индекс 3

  • ²

    Верхний индекс 2

  • ¹

    Верхний индекс 1

  • Верхний индекс восемь

  • Верхний индекс девять

  • Верхний индекс плюс

  • Верхний индекс минус

  • Верхний индекс равно

  • Верхний индекс левая скобка

  • Верхний индекс правая скобка

Кодировка

Кодировкаhexdec (bytes)decbinary
UTF-8E2 81 B0226 129 1761484433611100010 10000001 10110000
UTF-16BE20 7032 112830400100000 01110000
UTF-16LE70 20112 322870401110000 00100000
UTF-32BE00 00 20 700 0 32 112830400000000 00000000 00100000 01110000
UTF-32LE70 20 00 00112 32 0 0188114534401110000 00100000 00000000 00000000

§ Что такое степень числа.

Степень с натуральным показателем

Что такое степень числа Свойства степени Возведение в степень дроби

Обращаем ваше внимание, что в данном разделе разбирается понятие степени только с натуральным показателем и нулём.

Понятие и свойства степеней с рациональными показателями (с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.

Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.

Вместо произведения шести одинаковых множителей 4 · 4 · 4 · 4 · 4 · 4 пишут 46 и произносят «четыре в шестой степени».

4 · 4 · 4 · 4 · 4 · 4 = 46

Выражение 46 называют степенью числа, где:

  • 4 — основание степени;
  • 6показатель степени.

В общем виде степень с основанием «a» и показателем «n» записывается с помощью выражения:

Запомните!

Степенью числа «a» с натуральным показателем «n», бóльшим 1, называется произведение «n» одинаковых множителей, каждый из которых равен числу «a».

Запись «an» читается так: «а в степени n» или «n-ая степень числа a».

Исключение составляют записи:

  • a2 — её можно произносить как «а в квадрате»;
  • a3 — её можно произносить как «а в кубе».

Конечно, выражения выше можно читать и по определению степени:

  • a2 — «а во второй степени»;
  • a3 — «а в третьей степени».

Особые случаи возникают, если показатель степени равен единице или нулю (n = 1; n = 0).

Запомните!

Степенью числа «а» с показателем n = 1 является само это число:
a1 = a

Любое число в нулевой степени равно единице.
a0 = 1

Ноль в любой натуральной степени равен нулю.
0n = 0

Единица в любой степени равна 1.
1n = 1

Выражение 00 (ноль в нулевой степени) считают лишённым смысла.

  • (−32)0 = 1
  • 0253 = 0
  • 14 = 1

При решении примеров нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.

Пример. Возвести в степень.

  • 53 = 5 · 5 · 5 = 125
  • 2,52 = 2,5 · 2,5 = 6,25
  • ()4 = · · · =
    3 · 3 · 3 · 3
    4 · 4 · 4 · 4
    =
    81
    256

Возведение в степень отрицательного числа

Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

Запомните!

При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.

Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Запомните!

Отрицательное число, возведённое в чётную степень, есть число положительное.

Отрицательное число, возведённое в нечётную степень, — число отрицательное.

Квадрат любого числа есть положительное число или нуль, то есть:

a2 ≥ 0 при любом a.

  • 2 · (−3)2 = 2 · (−3) · (−3) = 2 · 9 = 18
  • −5 · (−2)3 = −5 · (−8) = 40

Обратите внимание!

При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (−5)4 и −54 это разные выражения. Результаты возведения в степень данных выражений будут разные.

Вычислить (−5)4 означает найти значение четвёртой степени отрицательного числа.

(−5)4 = (−5) · (−5) · (−5) · (−5) = 625

В то время как найти «−54» означает, что пример нужно решать в 2 действия:

  1. Возвести в четвёртую степень положительное число 5.
    54 = 5 · 5 · 5 · 5 = 625
  2. Поставить перед полученным результатом знак «минус» (то есть выполнить действие вычитание).
    −54 = −625

Пример. Вычислить: −62 − (−1)4

−62 − (−1)4 = −37

  1. 62 = 6 · 6 = 36
  2. −62 = −36
  3. (−1)4 = (−1) · (−1) · (−1) · (−1) = 1
  4. −(−1)4 = −1
  5. −36 − 1 = −37

Порядок действий в примерах со степенями

Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

Запомните!

В выражениях со степенями, не содержащими скобки, сначала выполняют вовзведение в степень, затем умножение и деление, а в конце сложение и вычитание.

Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

Пример. Вычислить:

Для облегчения решения примеров полезно знать и пользоваться таблицей степеней, которую вы можете бесплатно скачать на нашем сайте.

Для проверки своих результатов вы можете воспользоваться на нашем сайте калькулятором «Возведение в степень онлайн».


Что такое степень числа Свойства степени Возведение в степень дроби

Мэтуэй | Популярные задачи

92
1 Найти точное значение грех(30)
2 Найти точное значение грех(45)
3 Найти точное значение грех(30 градусов)
4 Найти точное значение грех(60 градусов)
5 Найти точное значение загар (30 градусов)
6 Найти точное значение угловой синус(-1)
7 Найти точное значение грех(пи/6)
8 Найти точное значение cos(pi/4)
9 Найти точное значение грех(45 градусов)
10 Найти точное значение грех(пи/3)
11 Найти точное значение арктан(-1)
12 Найти точное значение cos(45 градусов)
13 Найти точное значение cos(30 градусов)
14 Найти точное значение желтовато-коричневый(60)
15 Найти точное значение csc(45 градусов)
16 Найти точное значение загар (60 градусов)
17 Найти точное значение сек(30 градусов)
18 Найти точное значение cos(60 градусов)
19 Найти точное значение cos(150)
20 Найти точное значение грех(60)
21 Найти точное значение cos(pi/2)
22 Найти точное значение загар (45 градусов)
23 Найти точное значение arctan(- квадратный корень из 3)
24 Найти точное значение csc(60 градусов)
25 Найти точное значение сек(45 градусов)
26 Найти точное значение csc(30 градусов)
27 Найти точное значение грех(0)
28 Найти точное значение грех(120)
29 Найти точное значение соз(90)
30 Преобразовать из радианов в градусы пи/3
31 Найти точное значение желтовато-коричневый(30)
32
35 Преобразовать из радианов в градусы пи/6
36 Найти точное значение детская кроватка(30 градусов)
37 Найти точное значение арккос(-1)
38 Найти точное значение арктан(0)
39 Найти точное значение детская кроватка(60 градусов)
40 Преобразование градусов в радианы 30
41 Преобразовать из радианов в градусы (2 шт. )/3
42 Найти точное значение sin((5pi)/3)
43 Найти точное значение sin((3pi)/4)
44 Найти точное значение тан(пи/2)
45 Найти точное значение грех(300)
46 Найти точное значение соз(30)
47 Найти точное значение соз(60)
48 Найти точное значение соз(0)
49 Найти точное значение соз(135)
50 Найти точное значение cos((5pi)/3)
51 Найти точное значение cos(210)
52 Найти точное значение сек(60 градусов)
53 Найти точное значение грех(300 градусов)
54 Преобразование градусов в радианы 135
55 Преобразование градусов в радианы 150
56 Преобразовать из радианов в градусы (5 дюймов)/6
57 Преобразовать из радианов в градусы (5 дюймов)/3
58 Преобразование градусов в радианы 89 градусов
59 Преобразование градусов в радианы 60
60 Найти точное значение грех(135 градусов)
61 Найти точное значение грех(150)
62 Найти точное значение грех(240 градусов)
63 Найти точное значение детская кроватка(45 градусов)
64 Преобразовать из радианов в градусы (5 дюймов)/4
65 Найти точное значение грех(225)
66 Найти точное значение грех(240)
67 Найти точное значение cos(150 градусов)
68 Найти точное значение желтовато-коричневый(45)
69 Оценить грех(30 градусов)
70 Найти точное значение сек(0)
71 Найти точное значение cos((5pi)/6)
72 Найти точное значение КСК(30)
73 Найти точное значение arcsin(( квадратный корень из 2)/2)
74 Найти точное значение загар((5pi)/3)
75 Найти точное значение желтовато-коричневый(0)
76 Оценить грех(60 градусов)
77 Найти точное значение arctan(-( квадратный корень из 3)/3)
78 Преобразовать из радианов в градусы (3 пи)/4 
79 Найти точное значение sin((7pi)/4)
80 Найти точное значение угловой синус(-1/2)
81 Найти точное значение sin((4pi)/3)
82 Найти точное значение КСК(45)
83 Упростить арктан(квадратный корень из 3)
84 Найти точное значение грех(135)
85 Найти точное значение грех(105)
86 Найти точное значение грех(150 градусов)
87 Найти точное значение sin((2pi)/3)
88 Найти точное значение загар((2pi)/3)
89 Преобразовать из радианов в градусы пи/4
90 Найти точное значение грех(пи/2)
91 Найти точное значение сек(45)
92 Найти точное значение cos((5pi)/4)
93 Найти точное значение cos((7pi)/6)
94 Найти точное значение угловой синус(0)
95 Найти точное значение грех(120 градусов)
96 Найти точное значение желтовато-коричневый ((7pi)/6)
97 Найти точное значение соз(270)
98 Найти точное значение sin((7pi)/6)
99 Найти точное значение arcsin(-( квадратный корень из 2)/2)
100 Преобразование градусов в радианы 88 градусов

Символ степени быстрого копирования на Mac и ПК

  • 5°C: 5 градусов Цельсия
  • 10°C: 10 градусов Цельсия
  • 20°C: 20 градусов Цельсия
  • 50°C: 50 градусов Цельсия
  • -36°C: -36 градусов Цельсия

Использование символа градуса в математике

Символ градуса используется как единица измерения угла, представляющая 1/360 часть полного круга. Полный круг обозначает 360 градусов или 360° .

Понятие 360 берет свое начало от жителей вавилонян.

В году приблизительно 360 дней, и полный оборот вокруг окружности должен составлять 360°.

Select 360 может делиться на 24 различных числа, включая 1 и 360; он также состоит из всех чисел, начиная с 1 до 10, кроме 7 .

Символ градуса делает текст более удобочитаемым и осмысленным. Прямой угол или полукруг записывается как 180° .

Точно так же правая дуга или четверть окружности упоминается как 90°. Для измерения угла окружности: использовались транспортиры, стандартный транспортир.

Используется для измерения углов в диапазоне от 0° до 180° Полный транспортир используется для измерения полного оборота от 0° до 360° .

Градус — это более миниатюрное представление угла. Каждый градус более точно представляет угол, а полное вращение обеспечивает большую точность.

С другой стороны, это не тот случай, когда используется то же самое в астрономии или упоминается широта и долгота.

Градусы также могут быть записаны с использованием десятичных разрядов, но обычно используются шестидесятеричные единицы измерения.

Во многих математических проектах углы измеряются в радианах, единицах, отличных от градусов, используемых для измерения угловых измерений. Геометрические функции, представленные в радианах, довольно легко и естественно читаются.

Когда были изобретены метрические системы, « десятичных градуса » были определены на основе степеней десяти; однако идея не получила высокой оценки и поэтому не была реализована.

Использование символа градуса в компасе

Компас — это инструмент, используемый для определения направления, состоящий из магнитного указателя, который выравнивается с магнитным полем Земли.

Это выравнивание очень точное и очень полезно для навигации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *