Свойства li: Литий — Википедия – Свойства списков | htmlbook.ru

Литий металл. Свойства лития. Применение лития

Описание и свойства лития

Литий – элемент, с отношением к первой группе, во втором периоде таблицы, его атомный номер – 3. Формула лития — Li2O. Элемент открыли в 1817 г., был произведён только 1825 г. Название дословно переводится как «камень».

Литий-металл-Свойства-лития-Применение-лития-1

Литий – это металл, с щелочными свойствами, серебристого цвета, обладающий выраженными пластичными свойствами. Легко поддаётся обработке. Характерен наиболее большой температурой плавления, это 180,54º С, кипения — 1340º С и низкой плотностью по сравнению с остальными металлами щелочного ряда. Его плотность ниже плотности воды. Это позволяет ему оставаться на плаву на водной поверхности и даже в керосине.

Атом лития своими небольшими размерами позволяет металлу выказывать определённые свойства. Смешение с натрием происходит только в определённой температуре,а с цезием, рубидием и кадмием, он не смешиваться вовсе. Остальные металлы этого ряда подобными свойствами не обладают.

Не смотря на то, что литий это металл с щелочных свойств, он наименее активный из всех прочих, и с кислородом не взаимодействует, с сухим тоже. Поэтому хранить его в керосине, защищая от взаимодействия с кислородной средой, как  это делается с другим щелочным металлам, нет необходимости.

К тому же это бесполезно – на практике он всё равно всплывёт на поверхность. Поэтому его можно спокойно хранить на открытом воздухе длительное время, не опасаясь, что в нём произойдут нежелательные изменения.

Литий-металл-Свойства-лития-Применение-лития-2

При достаточной влажности происходит реакция с азотом и другими газами, растворёнными в воздухе. Превращения зависят от свойств контактирующего агента (газа). Может образоваться гидроксид, карбонат или нитрит лития. В процессе нагревания в кислородной среде образуется оксид лития Li2O.

Определить литий несложно – оказавшись в открытом пламени, он окрашивает его своеобразными красными оттенками. Самовоспламеняется при 300º С. Следует быть осторожным при этих процессах, так как продукты его горения раздражающе действуют на оболочки дыхательных путей, а также глаза. Также он может вызвать ожоги, попадая на мокрую кожу.

Реакция  на воду спокойная, при неё образуется гидроксид лития и водород. Также характерны реакции с этилом, водородом, и аммиаком. Реакция на серу происходит при 130º С, с образованием сульфидов. На углерод реагирует при 200º С, в полном вакууме, во время этого образуется ацетиленид. Растворяясь в аммиаке, образует раствор синеватого цвета.

При необходимости длительного хранения литий хранится в отдельных коробках из жести, погружённый в петролинейный эфир или парафин.

Месторождения и добыча лития

Литий представитель литофильных фрагментов ионного происхождения, из них можно отметить цезий, калий и рубидий. К основным минералам, содержащим литий, относятся пироксен, сподумен, слюда и лепидолит. Помимо его нахождения в самостоятельно образованных минералах, его можно обнаружить на месте калия в сторонних соединениях.

Литий-металл-Свойства-лития-Применение-лития-3

Образование лития происходит на почве редкометальных гранитных интрузий, в литиеносных пегматитах или гидротермальных месторождениях, которые помимо лития, в комплексе с вольфрамом, висмутом, оловом и т.д. Наиболее высокая концентрация лития, присуща породам онгонитам – гранитам, содержащих большое количество воды и фтористых образований.

В определённом количестве литий содержит вода в сильносолёных озёрах. Его месторождения имеются в Бразилии, Аргентине, Чили, Канаде, США, Конго, Швеции, Испании, Афганистане, Китае, и Австралии. А также в России, где половина залежей содержащих этот элемент, находится в Мурманской области.

Применение лития

Литий применяется в изготовлении керамики и стеклянной продукции, источников напряжения, горюче-смазочных материалов и полимеров, а также в металлургической промышленности и фармацевтике.

Литий-металл-Свойства-лития-Применение-лития-4

Нередко для устройства требуется мощный и ёмкий аккумулятор. Литий наиболее подходящая составляющая для его изготовления. Если для начинки используется литий, батарея прослужит гораздо дольше. Можно отметить, например, литий-ионный тип подзаряжающихся батарей.

Купить аккумуляторы литийного типа можно двух типов. Разница заключается в используемых электролитах. Литий-ионный аккумулятор содержит электролит гелевого типа. Модель используется для питания большинства портативной электротехники, в частности, сотовых телефонах, ноутбуках, цифровых фотоаппаратах и видеокамерах.

Литий-полимерный аккумулятор усовершенствованный вариант первого. В виде начинки используется полимер, содержащий литий. Для устройств имеющих большое потребление энергии, более подходит литий-полимерный вариант.

Также литий добавляют в электролиты других типов аккумулирующих устройств, например, щелочного вида. Это значительно повышает их ёмкость и срок эксплуатации.

Литий-металл-Свойства-лития-Применение-лития-5

Литий, в частности, применяется в металлургической промышленности при изготовления различных необходимых сплавов. Изготовляются сплавы с золотом, серебром, кадмием, магнием, и медью. Эти сплавы нашли своё применение в различных космических и авиационных технологиях.

Для военных нужд, с применением лития, изготовляются керамические элементы для различной техники и особо крепкое стекло. Также он используется в радиотехнических и оптических областях. Литий также применяется в металлогалогеновых лампах.

Идёт этот металл и на медицинские нужды. Доказано, что в небольшом количестве он необходим для нормальной работы организма. Его содержат все внутренние органы. Он участвует во многих обменных процессах и стимулирует иммунитет. Он применяется в препаратах для лечения психологических заболеваний и благотворно сказывается на работе нервной системы.

Цена лития

До 2008 г цена на литий постепенно росли, потом в связи с экономическим кризисом заметно упали. Если в то время цена на килограмм лития составляла порядком 66 долларов, то позже она понизилась с отметки 6,5 тыс. долларов до 5 тыс. долларов за тонну продукта, и после почти не поменялась. Но данные расценки относятся к товару относительно низкого качества.

На более чистый продукт, идущий, например, на изготовление батарей, идёт соответствующая накрутка около 700-800 $. Производители, несмотря на это, предпочитают доплачивать за качество, поэтому доходы от надбавки пока стабильные. Резкого повышения цен в обозримом будущем не ожидается. Чистый литий купить можно будет, приблизительно, за 6 тыс. долларов за тонну.

Литий-металл-Свойства-лития-Применение-лития-6

Прогнозы мирового рынка лития дают определённые надежды на его развитие. Это в основном обусловлено новыми амбициозными проектами в области строения электромобилей, для которых использоваться будут соответственно литиевые аккумуляторы.

С каждым годом этот проект становится всё более реальным, в связи со злободневностью загрязнения окружающей среды выхлопными газами и повышенным спросом на доступные средства передвижения.

Особенно проблема актуальна для развивающихся стран. Но сама технология ещё сырая, в частности, это проблема с хорошими дорогами, и электрическими заправками. Поэтому крупных подвижек на мировом рынке лития в ближайшие годы не предвидится.

Литий-ионный аккумулятор — Википедия

Литий-ионный аккумулятор цилиндрический, типоразмера 18650 Литий-ионный аккумулятор сотового телефона Siemens, призматический[1]

Литий-ионный аккумулятор (Li-ion) — тип электрического аккумулятора, который широко распространён в современной бытовой электронной технике и находит своё применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны, ноутбуки, цифровые фотоаппараты, видеокамеры и электромобили.

Основной источник: [2]

Впервые принципиальная возможность создания литиевых аккумуляторов на основе способности дисульфид титана или дисульфид молибдена включать в себя ионы лития при разряде аккумулятора и экстрагировать их при зарядке была показана в 1970 году Майклом Стэнли Уиттингемом. Существенным недостатком таких аккумуляторов являлось низкое напряжение - 2,3 В и высокая пожароопасность вследствие образования дендритов металлического лития, замыкающих электроды.

Позднее Дж. Гуденафом были синтезированы другие материалы для катода литиевого аккумулятора - кобальтит лития LixCoO2(1980 год), феррофосфат лития LiFePO4 (1996 год). Преимуществом таких аккумуляторов является более высокое напряжение - около 4 В.

Современный вариант литий-ионного аккумулятора с анодом из графита и катодом из кобальтита лития изобрёл в 1991 году Акира Ёсино. Первый литий-ионный аккумулятор по его патенту выпустила корпорация Sony в 1991 году.

В настоящее время ведутся исследования по поиску материалов на основе кремния и фосфора, обеспечивающих повышенную емкость интеркалирования ионов лития и по замене ионов лития на ионы натрия.

Нобелевская премия по химии 2019 года была вручена троим перечисленным выше учёным "За создание литий-ионных батарей".

При использовании литий-ионных аккумуляторов в составе батарей без балансирующего устройства, часть из них окажется переразряженной (B) при работе батареи или перезаряженной (C) либо не дозаряженной (D) до номинальной ёмкости во время зарядки батареи

Характеристики литий-ионных аккумуляторов зависят от химического состава составляющих компонентов и варьируются в следующих пределах:

Контроллер заряда/разряда (плата защиты) цилиндрического литий-ионного аккумулятора, конструкционно припаянный к отрицательному контакту аккумулятора и обратной фольгированной стороной выполняющий его функции. На снимке частично демонтирован и отсоединён от проводника, идущего к положительному контакту аккумулятора

Часто в корпус аккумулятора встраивают контроллер защиты (или PCM-плата (англ. Protection Circuit Module)), который отключает аккумулятор, предотвращая превышение напряжения заряда, чрезмерный разряд и превышение температуры, приводящие его к преждевременной деградации или разрушению. Также этот контроллер может опционально ограничивать ток потребления. Тем не менее, надо учитывать, что не все аккумуляторы снабжаются защитой. В целях снижения стоимости производители могут не устанавливать её. Кроме того, в устройствах в которых встроен контроллер защиты, а также в аккумуляторных батареях (к примеру ноутбуков) используются только аккумуляторы без встроенной платы защиты

[6].

Литиевые аккумуляторы имеют специальные требования при подключении нескольких ячеек последовательно. Зарядные устройства для таких многосоставных аккумуляторов с ячейками или сами аккумуляторные батареи снабжаются схемой балансировки ячеек. Смысл балансировки в том, что электрические свойства ячеек могут немного отличаться, и какая-то ячейка достигнет полного заряда/разряда раньше других. При этом необходимо прекратить заряд этой ячейки, продолжая заряжать остальные, так как переразряд или перезаряд литий-ионных аккумуляторов выводит их из строя. Эту функцию выполняет специальный узел — балансир[en] (или BMS-плата (англ. Battery Management System)[7]). Он шунтирует заряженную ячейку так, чтобы ток заряда шёл мимо неё. Балансиры одновременно выполняют функцию платы защиты в отношении каждого из аккумуляторов, так и батареи в целом[8][9]

.

Зарядные устройства могут поддерживать конечное напряжение заряда в диапазоне 4,15—4,25В.

Кроме контроллера защиты, литий-ионные, а также литий-полимерные аккумуляторы выпускаемые в формфакторах АА и ААА с напряжением 1,5 В (не следует путать с аналогичного размера формфакторами 14500 и 10440 напряжением 3,7 В, а также с незаряжаемыми одноразовыми литиевыми элементами питания напряжением тоже 1,5 В) оборудуются встроенными электронными преобразователями напряжения. Отличие таких аккумуляторов — стабилизированное напряжение на выходе на контактах в 1,5 В независимо от рабочего напряжения самой ячейки аккумулятора и его моментальное обнуление, когда напряжение самой литиевой ячейки становится ниже допустимого (срабатывает плата защиты).

Литий-ионный аккумулятор. Схема работы

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пористым сепаратором, пропитанным электролитом. Пакет электродов помещён в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъёмникам. Корпус иногда оснащают предохранительным клапаном, сбрасывающим внутреннее давление при аварийных ситуациях или нарушениях условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, оксиды (LiMnO2) и соли (LiMnRON) металлов.

Первоначально в качестве отрицательных пластин применялся металлический литий, затем — каменноугольный кокс. В дальнейшем стал применяться графит. Применение оксидов кобальта позволяет аккумуляторам работать при значительно более низких температурах, повышает количество циклов разряда/заряда одного аккумулятора. Распространение литий-железо-фосфатных аккумуляторов обусловлено их относительно низкой стоимостью. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления — СКУ или BMS (battery management system), — и специальным устройством заряда/разряда.

В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов:

  • кобальтат лития LiCoO2 и твёрдые растворы на основе изоструктурного ему никелата лития
  • литий-марганцевая шпинель LiMn2O4
  • литий-феррофосфат LiFePO4.

Электрохимические схемы литий-ионных аккумуляторов:

  • литий-кобальтовые LiCoO2 + 6C → Li1-xCoO2 + LiC6
  • литий-ферро-фосфатные LiFePO4 + 6C → Li1-xFePO4 + LiC6

Благодаря низкому саморазряду и большому количеству циклов заряда/разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом, помимо системы СКУ они укомплектовываются инверторами (преобразователи напряжения).

  • Высокая энергетическая плотность (ёмкость).[источник не указан 680 дней]
  • Низкий саморазряд.
  • Высокий ток работы
  • Не требуют обслуживания.

Широко применяемые литий-ионные аккумуляторы при перезаряде, несоблюдении условий заряда или при механическом повреждении часто бывают чрезвычайно огнеопасными.

  • Огнеопасны
  • Теряют работоспособность при переразряде
  • Теряют ёмкость на холоде
  • От 200 до 500 циклов зарядки

Взрывоопасность[править | править код]

Ambox contradict.svg

Статья или раздел содержит противоречия и не может быть понята однозначно.

Следует разрешить эти противоречия, используя более точные авторитетные источники или корректнее их цитируя. На странице обсуждения должны быть подробности.
Вздувшийся литий-ионный аккумулятор в плоском алюминиевом корпусе типоразмера ENEL10 (Li-42B, NP-45). Бумажная этикетка снята Ambox contradict.svg

Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Этот недостаток удалось окончательно устранить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные зарядные устройства для литий-ионных аккумуляторов предотвращают перезаряд и перегрев вследствие слишком интенсивного заряда.[источник не указан 559 дней]

Литиевые аккумуляторы изредка проявляют склонность к взрывному самовозгоранию.[17][18][19] Интенсивность горения даже от миниатюрных аккумуляторов такова, что может приводить к тяжким последствиям.[20] Авиакомпании и международные организации принимают меры к ограничению перевозок литиевых аккумуляторов и устройств с ними на авиатранспорте.[21][22]

Самовозгорание литиевого аккумулятора очень плохо поддается тушению традиционными средствами. В процессе термического разгона неисправного или поврежденного аккумулятора происходит не только выделение запасенной электрической энергии, но и ряд химических реакций, выделяющих вещества для поддержания горения, горючие газы от электролита[23], а также в случае не LiFePO4 электродов[24], выделяется кислород. Потому вспыхнувший аккумулятор способен гореть без доступа воздуха и для его тушения непригодны средства изоляции от атмосферного кислорода. Более того, металлический литий активно реагирует с водой с образованием горючего газа водорода, потому тушение литиевых аккумуляторов водой эффективно только для тех видов аккумуляторов, где масса литиевого электрода невелика. В целом тушение загоревшегося литиевого аккумулятора неэффективно. Целью тушения может быть лишь снижение температуры аккумулятора и предотвращение распространения пламени[25][26][27].

Эффект памяти[править | править код]

Традиционно считается, что, в отличие от Ni-Cd и Ni-MH аккумуляторов, Li-Ion аккумуляторы полностью избавлены от эффекта памяти. По результатам исследований учёных Института Пауля Шерера (Швейцария) в 2013 году этот эффект был таки обнаружен, но оказался ничтожен.[28]

Причиной его является то, что основой работы батареи являются процессы высвобождения и обратного захвата ионов лития, динамика которых ухудшается в случае неполной зарядки.[29] Во время зарядки ионы лития один за другим покидают частицы литий-феррофосфата, размер которых составляет десятки микрометров. Катодный материал начинает разделяться на частицы с разным содержанием лития. Заряжание батареи происходит на фоне возрастания электрохимического потенциала. В определённый момент он достигает предельного значения. Это приводит к ускорению высвобождения оставшихся ионов лития из катодного материала, но они уже не меняют суммарного напряжения батареи. Если батарея не будет полностью заряжена, то на катоде останется некоторое число частиц, близких к пограничному состоянию. Они практически достигли барьера высвобождения ионов лития, но не успели его преодолеть. При разряде свободные ионы лития стремятся вернуться на место и рекомбинировать с ионами феррофосфата. Однако на поверхности катода их также встречают частицы в пограничном состоянии, уже содержащие литий. Обратный захват затрудняется, и нарушается микроструктура электрода.

В настоящее время просматриваются два пути решения проблемы: внесение изменений в алгоритмы работы системы управления батареями и разработка катодов с увеличенной площадью поверхности.

Требования к режимам заряда/разряда[править | править код]

Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Также на жизненный цикл аккумуляторов влияет глубина его разряда перед очередной зарядкой и зарядка токами выше установленных производителем. Крайне чувствительны они и к напряжению зарядки. Если его повысить всего на 4 %, то аккумуляторы будут вдвое быстрее терять ёмкость от цикла к циклу. Ток зарядки зависит от разницы напряжений между аккумулятором и зарядным устройством и от сопротивления как самого аккумулятора, так и подводимых к нему проводов. Поэтому увеличение напряжения зарядки на 4 % может приводить к увеличению тока зарядки в 10 раз. Это отрицательно сказывается на аккумуляторе. Он может перегреваться и деградировать[30].

Старение[править | править код]

Литиевые аккумуляторы стареют, даже если не используются. Соответственно, нет смысла покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса.

Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 40-процентном заряде от ёмкости аккумулятора и температуре 0…10 °C:[31]

Температура, ⁰C С 40%-м зарядом, % за год Со 100%-м зарядом, % за год
0 2 6
25 4 20
40 15 35
60 25 40 % за три месяца

Снижение ёмкости при низких температурах[править | править код]

Как и в других типах аккумуляторов, разрядка в условиях низких температур приводит к снижению отдаваемой энергии, в особенности при температурах ниже 0 ⁰C. Так, снижение запаса отдаваемой энергии при понижении температуры от +20 ⁰C до +4 ⁰C приводит к уменьшению отдаваемой энергии на ~5-7 %, дальнейшее понижение температуры разрядки ниже 0 ⁰C приводит к потере отдаваемой энергии на десятки процентов. Разряд аккумулятора при температуре не ниже, указанной производителем аккумуляторов, не приводит к их деградации (преждевременному исчерпанию ресурса). Химия литий-ионных аккумуляторов более чувствительна к температурам при зарядке АКБ, и оно оптимально при температурах ~ +20 ⁰C, а при температурах ниже +5 ⁰C не рекомендовано.[32]

Как и для других типов аккумуляторов, одним из вариантов решения проблемы являются аккумуляторы с внутренним подогревом.[33]

  1. А.М. Скундин, О.А. Брылев. Наноматериалы в современных химических источниках тока (неопр.). МГУ (2011).
  2. Татьяна Кулова. Аккумуляторы, изменившие жизнь // Наука и жизнь. — 2019. — № 12. — С. 2-7.
  3. ↑ Li-ion 4.35V vs 4.20V сколько теряем? Тест SANYO UR18650ZTA. / Зарядки, пауэрбанки, провода и переходники / iXBT Live (рус.). iXBT Live (26 августа 2018). Дата обращения 18 октября 2019.
  4. ↑ Топовые аккумуляторы 21700: LG M50 5000мАч vs Samsung 48G 4800мАч / Зарядки, пауэрбанки, провода и переходники / iXBT Live (рус.). iXBT Live (30 июня 2018). Дата обращения 18 октября 2019.
  5. ↑ Sony VTC6A и VTC6 с одинаковыми Matrix-кодами - результаты тестов (неопр.). www.ecigtalk.ru. Дата обращения 18 октября 2019.
  6. Н. Бровка, О. Янченков Применение специализированных микропроцессоров для построения схем контроля и защиты литий-ионных и литий-полимерных аккумуляторных батарей // Журнал «Компоненты и Технологии». — № 3, 2007 г. С. 132—135. ISSN 2079-6811.
  7. ↑ Обзор BMS контроллера заряда литий-ионных аккумуляторов 18650 3.7В на YouTube
  8. Сердечный Д. В., Томашевский Ю. Б. Управление процессом заряда многоэлементных литий-ионных аккумуляторных батарей / Научная статья // Журнал «Измерение. Мониторинг. Управление. Контроль». — № 3 (21), 2017 г. С. 115—123. УДК 621.314. DOI 10.21685/2307-5538-2017-3-16. ISSN 1999-5458.
  9. Сазонов И. Е., Лукьяненко М. В. Выравнивание заряда в литий-ионных аккумуляторных батареях / Научная статья // Сборник материалов IX Междунарародной научно-практической конференции, посвящённой Дню космонавтики]]. «Актуальные проблемы авиации и космонавтики» [Электронныйресурс]. Красноярск: СибГУ им. М. Ф. Решетнева — № 9, т. 1, 2013 г. С. 204. УДК 537.22. ISSN 1999-5458.
  10. ↑ [1].
  11. ↑ [2].
  12. ↑ [3].
  13. ↑ [4]
  14. ↑ [5]
  15. ↑ [6].
  16. ↑ [7].
  17. ↑ Возгорания на Dreamliner связаны с аккумуляторами
  18. ↑ Samsung отзывает Galaxy Note 7 из-за возможности возгорания
  19. ↑ Находившийся за рулем Tesla бывший агент ФБР погиб в ДТП
  20. ↑ Should You Be Worried About Your E-Cigarette Exploding?
  21. ↑ Лайнер экстренно сел из-за загоревшегося планшета Samsung
  22. ↑ Lithium Batteries as Cargo in 2016 Update III
  23. Bandhauer Todd M., Garimella Srinivas, Fuller Thomas F. A Critical Review of Thermal Issues in Lithium-Ion Batteries (англ.) // Journal of The Electrochemical Society. — 2011. — Vol. 158, no. 3. — P. R1. — ISSN 0013-4651. — DOI:10.1149/1.3515880. [исправить]
  24. Zaghib K., Dubé J., Dallaire A., Galoustov K., Guerfi A., Ramanathan M., Benmayza A., Prakash J., Mauger A., Julien C.M. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries (англ.) // Journal of Power Sources. — 2012. — December (vol. 219). — P. 36—44. — ISSN 0378-7753. — DOI:10.1016/j.jpowsour.2012.05.018. [исправить]
  25. ↑ http://www.powerinfo.ru/accumulator-liion.php
  26. ↑ Гореть, а не тлеть! Что на самом деле случилось с электроседаном Tesla Motors?
  27. ↑ Аспекты безопасности литий-ионных аккумуляторов
  28. ↑ Paul Scherrer Institut (PSI) :: Memory effect now also found in lithium-ion batteries (неопр.). Дата обращения 2 мая 2013. Архивировано 11 мая 2013 года.
  29. ↑ Экономия батареи на Андроид: советы и мифы | AndroidLime (неопр.). androidlime.ru. Дата обращения 29 февраля 2016.
  30. Мельничук О. В., Фетисов В. С. Особенности заряда и разряда литиевых аккумуляторных батарей и современные технические средства управления этими процессами / Научная статья // Журнал «Электротехнические и информационные комплексы и системы». — № 2, т. 12, 2016 г. С. 41-48. УДК 621.355.9. ISSN 1999-5458.
  31. ↑ 5 практических советов по эксплуатации литий-ионных аккумуляторов (рус.)
  32. ↑ Эксплуатация и хранение литий-ионных аккумуляторов (рус.)
  33. ↑ Независимая интернет-газета «Новый взгляд». 22.01.2016.Созданы литий-ионные аккумуляторы с подогревом

№3 Литий

История открытия:

В 1817 г. шведский химик и минералог Август Арфведсон, анализируя природный минерал петалит, установил, что в нем содержится "огнепостоянная щелочь до сих пор неизвестной природы". Позднее он нашел аналогичные соединения в составе других минералов. Арфведсон предположил, что это соединения нового элемента и дал ему название литий (от греческого liqoz – камень).
Металлический литий был выделен в 1818 году английский химиком Гемфри Дэви электролизом расплава гидроксида лития.

Нахождение в природе и получение:

Природный литий состоит из двух стабильных изотопов - 6Li (7,42%) и 7Li (92,58%).
Литий - сравнительно мало распространенный элемент (массовая доля в земной коре 1,8*10-3%, 18 г/тонну). Кроме петалита LiAl[Si4O10], основными минералами лития являются слюда, лепидолит - KLi1,5Al1,5[Si3AlO10](F,OH)2 и пироксен сподумен - LiAl[Si2O6].
В настоящее время для получения металлического лития его природные минералы или обрабатывают серной кислотой, или спекают с CaO или CaCO3, а затем выщелачивают водой. Получают растворы сульфата или гидроксида лития, из которых осаждают плохо растворимый карбонат Li2CO3, который затем переводят в хлорид LiCl. Электролизом расплава хлорида лития в смеси с хлоридом калия или бария получают металлический литий.

Физические свойства:

Простое вещество литий - мягкий щелочной металл серебристо-белого цвета. Из всех щелочных металлов он самый твердый, высокоплавкий (Ткип=180,5 и Тпл=1340° С). Это самый легкий металл (плотность 0,533 г/см3), он плавает не только в воде, но и в керосине. Литий и его соли окрашивают пламя в карминно-красный цвет.

Химические свойства:

Литий проявляет типичные свойства щелочных металлов, взаимодействуя с водой, кислородом, другими неметаллами. Хранить его приходится под слоем под слоем минерального масла, придавливая сверху, чтобы не всплывал.
В соответствии с положением в ПСХЭ, литий наименее активный щелочной металл. Так в реакции с кислородом он образует в основном оксид лития, а не пероксиды как другие металлы. Подобно натрию литий растворяется в жидком аммиаке, образуя синий раствор с металлической проводимостью. Растворенный литий постепенно реагирует с аммиаком: 2Li + 2NH3 = 2LiNH2 + H2.
Литий отличается повышенной активностью при взаимодействии с азотом, образуя с ним уже при обычной температуре нитрид Li3N.
По некоторым свойствам литий и его соединения напоминают соединения магния (диагональное сходство в таблице Менделеева).

Важнейшие соединения:

Оксид лития, Li2O - белое кристаллическое вещество, основный оксид, с водой образует гидроксид

Гидроксид лития - LiOH - белый порошок, обычно моногидрат, LiOH*H2O, сильное основание

Соли лития - бесцветные кристаллические вещества, гигроскопичны, образуют кристаллогидраты состава LiX*3H2O. Карбонат и фторид лития подобно аналогичным солям магния малорастворимы. Карбонат и нитрат лития при нагревании разлагаются, образуя оксид лития:
Li2CO3 = Li2O + CO2; 4LiNO3 = 2Li2O + 4NO2 + O2

Пероксид лития - Li2O2 - белое кристаллическое вещество, получают реакцией гидроксида лития с пероксидом водорода: 2LiOH + H2O2 = Li2O2 + 2H2O
Используют в космических аппаратах и подводных лодках для получения кислорода:
2Li2O2 + 2CO2 = 2Li2CO3 +O2

Гидрид лития LiH получают взаимодействием расплавленного лития с водородом. Бесцветные кристаллы, реагирует с водой и кислотами с выделением водорода. Источник водорода в полевых условиях.

Применение:

Металлический литий - высокопрочные и сверхлегкие сплавы с магнием и алюминием для авиационной и космической техники. Легирующая добавка в металлургии (связывает азот, кремний, углерод). Теплоноситель (расплав) в ядерных реакторах.

Из лития изготовляют аноды химических источников тока и гальванических элементов с твёрдым электролитом.

Соединения: специальные стекла, глазури, эмали, керамика. Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров
LiOH как добавка в электролит щелочных аккумуляторов. Карбонат лития – добавка в расплав при производстве алюминия: снижает температуру плавления электролита, увеличивает силу тока, уменьшает нежелательное выделение фтора.

Металлоорганические соединения лития (например бутиллитий LiС4Н9) - широко применяются в промышленном и лабораторном органическом синтезе и как катализаторы полимеризации.

Дейтерид лития-6: как источник дейтерия и трития в термоядерном оружии (водородная бомба). См. Ядерные реакции дейтерида лития. (анимированные модели).

Содержание лития в организме человека составляет около 70 мг. В течение суток в организм взрослого человека поступает около 100 мкг лития. Литий способствует высвобождению магния из клеточных «депо» и тормозит передачу нервного импульса, ингибируя проводимость нервной системы. Соли лития применяются психотропные лекарственные средства, оказывая успокаивающий эффект при лечении шизофрении и депрессии. Однако передозировка может привести к тяжелым осложнениям и летальному исходу.

Нурмаганбетов Т.
ТюмГУ, 582 группа, 2011 г.


Источники:
Литий // Википедия. URL: http://ru.wikipedia.org/wiki/Литий (дата обращения: 23.05.2013).
Литий // Онлайн Энциклопедия Кругосвет. URL: http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/LITI.html (дата обращения: 23.05.2013).

Литий

Ли́тий (лат. Lithium; обозначается символом Li) — элемент главной подгруппы первой группы, второго периода периодической системы химических элементов таблицы Менделеева, с атомным номером 3. Простое вещество литий (CAS-номер: 7439-93-2) — мягкий щелочной металл серебристо-белого цвета.

История и происхождение названия

Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li,Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите KLi1.5Al1.5[Si3AlO10](F,OH)2. Металлический литий впервые получил Гемфри Дэви в 1825 году. Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

Нахождение в природе

Геохимия лития Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л. Основные минералы лития — слюда лепидолит — KLi1.5Al1.5[Si3AlO10] (F, OH)2 и пироксен сподумен — LiAl [Si2O6]. Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространенных породообразующих минералах. Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, высоким содержанием фтора и воды, и исключительно высокими концентрациями различных редких элементов, в том числе и лития. Другой тип месторождений лития — рассолы некоторых сильносоленых озёр. Месторождения Месторождения лития известны в России (более 50% запасов страны сосредоточено в редкометальных месторождениях Мурманской области), Боливии, Аргентине, Мексике, Афганистане, Чили, США, Канаде, Бразилии, Испании, Швеции, Китае, Австралии, Зимбабве, Конго.

Получение

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO3 (щелочной способ), или обрабатывают K2SO4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li2CO3, который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси). 2LiCl = 2Li + Cl2 В дальнейшем полученный литий очищают методом вакуумной дистилляции.

Физические свойства

Литий — серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой. Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды). Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие па́ры щелочных металлов смешиваются друг с другом в любых соотношениях.

Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранится в керосине (к тому же плотность лития столь мала, что он будет в нём плавать) и может непродолжительное время храниться на воздухе. Во влажном воздухе медленно реагирует с азотом, находящимся в воздухе, превращаясь в нитрид Li3N, гидроксид LiOH и карбонат Li2CO3. В кислороде при нагревании горит, превращаясь в оксид Li2O. Есть интересная особенность, что в интервале температур от 100 °C до 300 °C литий покрывается плотной оксидной плёнкой, и в дальнейшем не окисляется. В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура возгорания находится около 300 °C. Продукты горения раздражают слизистую оболочку носоглотки. Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H2. Реагирует также с этиловым спиртом (с образованием алкоголята), с водородом (при 500—700 °C) с образованием гидрида лития, с аммиаком и с галогенами (с иодом — только при нагревании). При 130 °C реагирует с серой с образованием сульфида. В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид). При 600—700 °C литий реагирует с кремнием с образованием силицида. Химически растворим в жидком аммиаке (−40 °C), образуется синий раствор. Литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках. Металлический литий вызывает ожоги при попадании на влажную кожу, слизистые оболочки и в глаза.


Источник: Википедия

Другие заметки по химии

Оксид лития — Википедия

Материал из Википедии — свободной энциклопедии

Окси́д ли́тия (окись лития) — бинарное неорганическое вещество, имеющее химическую формулу Li2O. Относится к классу основных оксидов.

Оксид лития при стандартных условиях представляет собой бесцветные гигроскопичные кристаллы с кубической решёткой. Пространственная группа F m3m, a = 0,4628 нм, Z = 4.

При температуре выше 1000 °C возгоняется, в присутствии паров воды возгонка ускоряется. В газообразном состоянии при температуре выше 1500 °C оксид лития частично диссоциирует на Li и O2. Диамагнитен. С водородом, кислородом, углеродом и монооксидом углерода не взаимодействует даже при нагревании. При высоких температурах реагирует с большинством металлов, за исключением золота, платины и никеля. При действии магния, алюминия или марганца при температуре выше 1000 °C оксид лития восстанавливается до металлического лития. С оксидами ряда металлов дает оксометаллаты, двойные и тройные оксиды. Оксид лития — единственный среди оксидов щелочных металлов, образующийся в качестве основного продукта при нагревании металла выше 200 °C на воздухе (присутствуют только следы пероксида лития).[2]

4 Li+ O2⟶2 Li2O{\displaystyle {\mathsf {4\ Li+\ O_{2}\longrightarrow 2\ Li_{2}O}}}
2 Li2O2→195∘C 2 Li2O+ O2↑{\displaystyle {\mathsf {2\ Li_{2}O_{2}{\xrightarrow {195^{\circ }C}}\ 2\ Li_{2}O+\ O_{2}\uparrow }}}
  • Взаимодействует с водой, образуя щёлочь:
 Li2O+h3O→  2 LiOH{\displaystyle {\mathsf {\ Li_{2}O+H_{2}O{\xrightarrow {\ }}\ 2\ LiOH}}}
 Li2O+2 HCl→  2 LiCl+h3O{\displaystyle {\mathsf {\ Li_{2}O+2\ HCl{\xrightarrow {\ }}\ 2\ LiCl+H_{2}O}}}
  • литий из оксида вытесняется некоторыми металлами и неметаллами:
 Li2O+Mg→800∘C 2 Li+MgO{\displaystyle {\mathsf {\ Li_{2}O+Mg{\xrightarrow {800^{\circ }C}}\ 2\ Li+MgO}}}
2 Li2O+Si→1000∘C 4 Li+SiO2{\displaystyle {\mathsf {2\ Li_{2}O+Si{\xrightarrow {1000^{\circ }C}}\ 4\ Li+SiO_{2}}}}
  • с кислотообразующими оксидами образует соли:
Li2O+CO2→500∘C Li2CO3{\displaystyle {\mathsf {Li_{2}O+CO_{2}{\xrightarrow {500^{\circ }C}}\ Li_{2}CO_{3}}}}

Оксид лития применяют в качестве добавки к смесям реагентов при твердофазном синтезе двойных и тройных оксидов для понижения температуры процесса; как компонент в производстве специальных стёкол (в частности, с небольшим температурным коэффициентом линейного расширения и прозрачных для рентгеновских лучей), глазурей и эмалей, повышающий их химическую и термическую стойкость, прочность и снижающий вязкость расплавов. Также используется в термобарьерных покрытиях вместе с оксидами иттрия и циркония для повышения стойкости.

Литий-полимерный аккумулятор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 января 2018; проверки требуют 30 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 января 2018; проверки требуют 30 правок. Литий-полимерный аккумулятор в герметичном мягком корпусе из металлизированной полимерной плёнки с контроллером. У аккумуляторов в мягкой оболочке прямоугольной формы в маркировке указываются габариты в виде 6-8 значной цифры: первые 2 цифры — толщина в десятых долях мм (в мм если первая цифра = 0), вторые 2 цифры (3 цифры при 8 значной маркировке) — ширина в мм, последние 2 цифры (3 цифры при 7-8 значной маркировке) — длина в мм (на фото: 063450 — 6 × 34 × 50 мм. Литий-полимерный аккумулятор сотового телефона в алюминиевом корпусе с контроллером Литий-полимерные аккумуляторы в корпусе из полимерной плёнки разной формы без контроллеров

Литий-полимерный аккумулятор (литий-ионный полимерный аккумулятор (lithium-ion polymer battery); аббревиатуры: Li-pol, Li-polymer, LIP, Li-poly и т. д.) — это усовершенствованная конструкция литий-ионного аккумулятора. В качестве электролита используется полимерный материал.[1] Используется в мобильных телефонах, цифровой технике, радиоуправляемых моделях и пр.

Обычные бытовые литий-полимерные аккумуляторы не способны отдавать большой ток, но существуют специальные силовые литий-полимерные аккумуляторы, способные отдавать ток, в 10 и даже 130[2] раз превышающий численное значение ёмкости в ампер-часах. Они широко применяются как аккумуляторы для радиоуправляемых моделей, а также в портативном электроинструменте и в некоторых современных электромобилях.

  • Большая плотность энергии на единицу массы;
  • Низкий саморазряд;
  • Толщина элементов от 1 мм;
  • Возможность получать очень гибкие формы;
  • Слабо выраженный эффект памяти;
  • Незначительный перепад напряжения по мере разряда.
  • Диапазон рабочих температур литий-полимерных аккумуляторов довольно широкий: от −20 до +40 °C по данным производителей.

Аккумуляторы пожароопасны при перезаряде и/или перегреве. Для борьбы с этим явлением все бытовые аккумуляторы снабжаются встроенной электронной схемой, которая предотвращает перезаряд и перегрев вследствие слишком интенсивного заряда. По этой же причине требуют специальных алгоритмов зарядки (зарядных устройств).

Количество рабочих циклов 800—900, при разрядных токах в до потери ёмкости в 20 % (для сравнения: NiCd — 1000 циклов, NiMH — 600, LSD NiMH — 1500, LiFePO4 — 2000).[3]

Старение[править | править код]

Вздувшийся литий-полимерный аккумулятор в мягкой оболочке

Под воздействием заряда литий-полимерные и литий-ионные аккумуляторы снижают ёмкость в зависимости от температурного режима.

Глубокий разряд полностью выводит из строя литий-полимерный аккумулятор. Оптимальные условия хранения Li-pol аккумуляторов достигаются при 40%-м заряде от ёмкости аккумулятора. Литиевые аккумуляторы стареют, даже если не используются. На 2009 год бытовало мнение, что через 2 года батарея теряет около 20 % ёмкости[3]. Соответственно, нет необходимости покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса. При покупке рекомендуется посмотреть на дату производства, чтобы знать, сколько данный источник питания уже пролежал на складе.

  • ГОСТ 15596-82 Источники тока химические. Термины и определения.

Литий — Мегаэнциклопедия Кирилла и Мефодия — статья

Литий встречается в природе в виде двух стабильных нуклидов 6Li (7, 52% по массе) и 7Li (92, 48%). В периодической системе Д. И. Менделеева литий расположен во втором периоде, группе IA и принадлежит к числу щелочных металлов. Конфигурация электронной оболочки нейтрального атома лития 1s22s1. В соединениях литий всегда проявляет степень окисления +1.

Металлический радиус атома лития 0, 152 нм, радиус иона Li+ 0, 078 нм. Энергии последовательной ионизации атома лития 5, 39 и 75, 6 эВ. Электроотрицательность по Полингу 0, 98, самая большая у щелочных металлов.

В виде простого вещества литий — мягкий, пластичный, легкий, серебристый металл.

Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li, Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите KLi1.5Al1.5[Si3AlO10](F, OH)2. Свое название получил из-за того, что был обнаружен в «камнях» (греч. Litos — камень). Характерное для соединений лития красное окрашивание пламени впервые наблюдал немецкий химик Х.Г.Гмелин в 1818 году. В этом же году английский химик Г. Дэви электролизом расплава гидроксида лития получил кусочек металла. Получить свободный металл в достаточных количествах удалось впервые только в 1855 году путем электролиза расплавленного хлорида:

2LiCl = 2Li + Cl2

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO3 (щелочной способ), или обрабатывают K2SO4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li2CO3, который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси). В дальнейшем полученный литий очищают методом вакуумной дистилляции.

Литий довольно широко распространен в земной коре, его содержание в ней составляет 6, 5·10–3% по массе. Как уже упоминалось, основные минералы, содержащие литий, — это петалит (содержит 3, 5-4, 9 % Li2O), сподумен (6-7 % Li2O), лепидолит (4-6 % Li2, O) и амблигонит LiAl [PO4] — 8-10 % Li2, O. В виде примеси литий содержится в ряде породообразующих минералов, а также присутствует в рапе некоторых озер и в минерализованных водах. В морской воде содержится около 2·10-5 % лития.

Из металлов литий самый легкий, его плотность 0, 534 г/см3 . Температура плавления 180, 5 °C, температура кипения 1326 °C. При температурах от –193 °C до температуры плавления устойчива кубическая объемно центрированная модификация лития с параметром элементарной ячейки а=0, 350 нм.

Из-за небольшого радиуса и маленького ионного заряда литий по своим свойствам больше всего напоминает не другие щелочные металлы, а элемент группы IIA магний. Литий химически очень активен. Он способен взаимодействовать с кислородом и азотом воздуха при обычных условиях, поэтому на воздухе он быстро окисляется с образованием темного налета продуктов взаимодействия:

4Li + O2 = 2Li2O,

6Li + N2 = 2Li3N

При контактах с галогенами литий самовоспламеняется при обычных условиях. Подобно магнию, нагретый литий способен гореть в CO2:

4Li + CO2 = C + 2Li2O

Стандартный электродный потенциал Li/Li+ имеет наибольшее отрицательное значение (E°298 = –3, 05 B) по сравнению со стандартными электродными потенциалами других металлов. Это обусловлено большой энергией гидратации маленького иона Li+, что значительно смещает равновесие в сторону ионизации металла:

Liтвердый Li+раствор + e

Для слабо сольватирующих растворителей значение электродного потенциала лития соответствует его меньшей химической активности в ряду щелочных металлов.

Соединения лития — соли — как правило, бесцветные кристаллические вещества. По химическому поведению соли лития несколько напоминают аналогичные соединения магния или кальция. Плохо растворимы в воде фторид LiF, карбонат Li2CO3, фосфат Li2PO4, хорошо растворим хлорат лития LiClO3 — это, пожалуй, одно из самых хорошо растворимых соединения в неорганической химии (при 18°C в 100 г воды растворяется 313, 5 г LiClO3).

Оксид лития Li2O — белое твердое вещество — представляет собой типичный щелочной оксид. Li2O активно реагирует с водой с образованием гидроксида лития LiOH.

Этот гидроксид получают электролизом водных растворов LiCl:

2LiCl + 2H2O = 2LiOH + Cl2­ + H2­

LiOH — сильное основание, но оно отличается по свойствам от гидроксидов других щелочных металлов. Гидроксид лития уступает им в растворимости. При прокаливании гидроксид лития теряет воду:

2LiOH = Li2O + H2

Большое значение в синтезе органических и неорганических соединений имеет гидрид лития LiH, который образуется при взаимодействии расплавленного лития с водородом:

2Li + H2 = 2LiH

LiH — ионное соединение, строение кристаллической решетки которого похоже на строение кристаллической решетки хлорида натрия NaCl. Гидрид лития можно использовать в качестве источника водорода для наполнения аэростатов и спасательного снаряжения (надувных лодок и т.п.), так как при его гидролизе образуется большое количество водорода (1 кг LiH дает 2, 8 м3 H2):

LiH + H2O = LiOH + H2­

Он также находит применение при синтезе различных гидридов, например, борогидрида лития:

BCl3 + 4LiH = Li[BH4] + 3LiCl.

Литий образует соединения с частично ковалентной связью Li—C, т. е. литийорганические соединения. Например, при реакции иодбензола C6H5I с литием в органических растворителях протекает реакция:

C6H5I + 2Li = C6H5Li + LiI.

Литийорганические соединения широко используются в органическом синтезе и в качестве катализаторов.

Из лития изготовляют аноды химических источников тока, работающих на основе неводных твердых электролитов. Жидкий литий может служить теплоносителем в ядерных реакторах. С использованием нуклида 6Li получают радиоактивный тритий 31H (Т):

63Li + 10n = 31H + 42He.

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий, в черной и цветной металлургии (для раскисления, повышения пластичности и прочности сплавов), для получения пластичных смазок. Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

Литий в незначительных количествах присутствует в живых организмах, но по-видимому, не выполняет никаких биологических функций. Установлено его стимулирующее действие на некоторые процессы в растениях, способность повышать их устойчивость к заболеваниям.

В организме среднего человека (масса 70 кг) содержится около 0, 7 мг лития. Токсическая доза 90-200 мг.

Как и другие щелочные металлы, металлический литий способен вызывать ожоги кожи и слизистых, особенно в присутствии влаги. Поэтому работать с ним можно только в защитной одежде и очках. Хранят литий в герметичной таре под слоем минерального масла. Отходы лития нельзя выбрасывать в мусор, для уничтожения их следует обработать этиловым спиртом:

2Н5ОН + 2Li = 2С2Н5ОLi + Н2

Образовавшийся этилат лития затем разлагают водой до спирта и гидроксида лития LiOH.

  • Плющев В. Е., Степин Б. Д. Химия и технология соединений лития, рубидия и цезия. М., 1970.
  • Полуэктов Н. С., Мешкова С. Б., Полуэктова Е. Н. Аналитическая химия лития. М., 1975.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *