Знак степени 1: Маленькие цифры ¹ ³ ⁺ ₄ ₇ ₌ – Возведение в степень — Википедия

Содержание

Возведение в степень — Википедия

Графики четырёх функций вида y=ax{\displaystyle y=a^{x}}, a{\displaystyle a} указано рядом с графиком функции

Возведе́ние в сте́пень — арифметическая операция, первоначально определяемая как результат многократного умножения числа на себя. Степень с основанием a{\displaystyle a} и натуральным показателем b{\displaystyle b} обозначается как

ab=a⋅a⋅…⋅a⏟b,{\displaystyle a^{b}=\underbrace {a\cdot a\cdot \ldots \cdot a} _{b},}

где b{\displaystyle b} — количество множителей (умножаемых чисел)[1][К 1].

Например, 32=3⋅3=9;24=2⋅2⋅2⋅2=16{\displaystyle 3^{2}=3\cdot 3=9;\quad 2^{4}=2\cdot 2\cdot 2\cdot 2=16}

В языках программирования, где написание ab{\displaystyle a^{b}} невозможно, применяются альтернативные обозначения[⇨].

Возведение в степень может быть определено также для отрицательных[⇨], рациональных[⇨], вещественных[⇨] и комплексных[⇨] степеней[1].

Извлечение корня — одна из операций, обратных возведению в степень, она по известным значениям степени c=ab{\displaystyle c=a^{b}} и показателя b{\displaystyle b} находит неизвестное основание a=cb{\displaystyle a={\sqrt[{b}]{c}}}. Вторая обратная операция — логарифмирование, она по известным значениям степени c=ab{\displaystyle c=a^{b}} и основания a{\displaystyle a} находит неизвестный показатель b=logac{\displaystyle b=log_{a}c}. Задача нахождения числа по известному его логарифму (потенцирование, антилогарифм) решается с помощью операции возведения в степень[⇨]).

Существует алгоритм быстрого возведения в степень, выполняющий возведение в степень за меньшее, чем в определении, число умножений.

Запись an{\displaystyle a^{n}} обычно читается как «a в n{\displaystyle n}-й степени» или «a в степени n». Например, 104{\displaystyle 10^{4}} читается как «десять в четвёртой степени», 103/2{\displaystyle 10^{3/2}} читается как «десять в степени три вторых (или: полтора)».

Для второй и третьей степени существуют специальные названия: возведение в квадрат и в куб соответственно. Так, например, 102{\displaystyle 10^{2}} читается как «десять в квадрате», 103{\displaystyle 10^{3}} читается как «десять в кубе». Такая терминология возникла из древнегреческой математики. Древние греки формулировали алгебраические конструкции на языке геометрической алгебры. В частности, вместо употребления слова «умножение» они говорили о площади прямоугольника или об объёме параллелепипеда: вместо a2{\displaystyle a^{2}}, a3{\displaystyle a^{3}} древние греки говорили «квадрат на отрезке a», «куб на a». По этой причине четвёртую степень и выше древние греки избегали[2].

Основные свойства[править | править код]

Все приведенные ниже основные свойства возведения в степень выполняются для натуральных, целых, рациональных и вещественных чисел[3]. Для комплексных чисел, в силу многозначности комплексной операции, они выполняются только в случае натурального показателя степени[⇨].

Запись anm{\displaystyle a^{n^{m}}} не обладает свойством ассоциативности (сочетательности), то есть, в общем случае,(an)m≠a(nm){\displaystyle (a^{n})^{m}\neq a^{\left({n^{m}}\right)}} Например, (22)3=43=64{\displaystyle (2^{2})^{3}=4^{3}=64}, а 2(23)=28=256{\displaystyle 2^{\left({2^{3}}\right)}=2^{8}=256}. В математике принято считать запись anm{\displaystyle a^{n^{m}}} равнозначной a(nm){\displaystyle a^{\left({n^{m}}\right)}}, а вместо (an)m{\displaystyle (a^{n})^{m}} можно писать просто anm{\displaystyle a^{nm}}, пользуясь предыдущим свойством. Впрочем, некоторые языки программирования не придерживаются этого соглашения.

Возведение в степень не обладает свойством коммутативности (переместительности): вообще говоря, ab≠ba{\displaystyle a^{b}\neq b^{a}}, например, 25=32{\displaystyle 2^{5}=32}, но 52=25.{\displaystyle 5^{2}=25.}

Таблица натуральных степеней небольших чисел[править | править код]

nn2n3n4n5n6n7n8n9n10
2481632641282565121024
3927812437292 1876 56119 68359 049
4166425610244 09616 38465 536262 1441 048 576
525125625312515 62578 125390 6251 953 1259 765 625
636216
1296
7 77646 656279 9361 679 61610 077 69660 466 176
749343240116 807117 649823 5435 764 80140 353 607282 475 249
864512409632 768262 1442 097 15216 777 216134 217 7281 073 741 824
981729656159 049531 4414 782 96943 046 721387 420 4893 486 784 401
10100100010 000100 0001 000 00010 000 000100 000 0001 000 000 00010 000 000 000

Целая степень[править | править код]

Операция обобщается на произвольные целые числа, включая отрицательные и ноль[4]::

az={az,z>01,z=0,a≠01a|z|,z<0,a≠0{\displaystyle a^{z}={\begin{cases}a^{z},&z>0\\1,&z=0,a\neq \;0\\{\frac {1}{a^{|z|}}},&z<0,a\neq \;0\end{cases}}}

Результат не определён при a=0{\displaystyle a=0} и z⩽0{\displaystyle z\leqslant 0}.

Рациональная степень[править | править код]

Возведение в рациональную степени p/q,{\displaystyle p/q,} где p{\displaystyle p} — целое число, а q{\displaystyle q} — натуральное, определяется следующим образом[4]:

apq=(aq)p{\displaystyle a^{p \over q}=({\sqrt[{q}]{a}})^{p}}.

Результат не определён при a=0{\displaystyle a=0} и p/q⩽0.{\displaystyle p/q\leqslant 0.} Для отрицательных a{\displaystyle a} в случае нечётного p{\displaystyle p} и чётного q{\displaystyle q} в результате вычисления степени получаются комплексные числа.

Следствие: an=a1/n.{\displaystyle {\sqrt[{n}]{a}}=a^{1/n}.} Таким образом, понятие рациональной степени объединяет возведение в целочисленную степень и извлечение корня в единую операцию.

Вещественная степень[править | править код]

Если a⩾0,r{\displaystyle a\geqslant 0,r} — вещественные числа, причём r{\displaystyle r} — иррациональное число, возможно определить ar{\displaystyle a^{r}} следующим образом: поскольку любое вещественное число можно приблизить, сверху и снизу, двумя рациональными числами, то есть можно подобрать для r{\displaystyle r} рациональный интервал [p,q]{\displaystyle [p,q]} с любой степенью точности, то общая часть всех соответствующих интервалов [ap,aq]{\displaystyle [a^{p},a^{q}]} состоит из одной точки, которая и принимается за ar{\displaystyle a^{r}}.

Полезные формулы:

xy=ayloga⁡x{\displaystyle x^{y}=a^{y\log _{a}x}}
xy=eyln⁡x{\displaystyle x^{y}=e^{y\ln x}}
xy=10ylg⁡x{\displaystyle x^{y}=10^{y\lg x}}

Последние две формулы используют для возведения положительных чисел в произвольную степень на электронных калькуляторах (включая компьютерные программы), не имеющих встроенной функции xy{\displaystyle x^{y}}, и для приближённого возведения в нецелую степень или для целочисленного возведения в степень, когда числа слишком велики для того, чтобы записать результат полностью.

Комплексная степень[править | править код]

Возведение комплексного числа в натуральную степень выполняется обычным умножением, и результат однозначен (см. формулу Муавра). Основой для более общего определения комплексной степени служит экспонента ez{\displaystyle e^{z}}, где e{\displaystyle e} — число Эйлера, z=x+iy{\displaystyle z=x+iy} — произвольное комплексное число[5].

Определим комплексную экспоненту с помощью такого же ряда, как и вещественную:

ez=1+z+z22!+z33!+z44!+⋯.{\displaystyle e^{z}=1+z+{\frac {z^{2}}{2!}}+{\frac {z^{3}}{3!}}+{\frac {z^{4}}{4!}}+\cdots .}

Этот ряд абсолютно сходится для любого комплексного z,{\displaystyle z,} поэтому его члены можно как угодно перегруппировывать. В частности, отделим от него часть для eiy{\displaystyle e^{iy}}:

eiy=1+iy+(iy)22!+(iy)33!+(iy)44!+⋯=(1−y22!+y44!−y66!+⋯)+i(y−y33!+y55!−⋯).{\displaystyle e^{iy}=1+iy+{\frac {(iy)^{2}}{2!}}+{\frac {(iy)^{3}}{3!}}+{\frac {(iy)^{4}}{4!}}+\cdots =\left(1-{\frac {y^{2}}{2!}}+{\frac {y^{4}}{4!}}-{\frac {y^{6}}{6!}}+\cdots \right)+i\left(y-{\frac {y^{3}}{3!}}+{\frac {y^{5}}{5!}}-\cdots \right).}

В скобках получились известные из вещественного анализа ряды для косинуса и синуса, и мы получили формулу Эйлера:

ez=exeyi=ex(cos⁡y+isin⁡y){\displaystyle e^{z}=e^{x}e^{yi}=e^{x}(\cos y+i\sin y)}

Общий случай ab{\displaystyle a^{b}}, где a,b{\displaystyle a,b} — комплексные числа, определяется через представление a{\displaystyle a} в показательной форме: a=rei(θ+2πk){\displaystyle a=re^{i(\theta +2\pi k)}} согласно определяющей формуле[5]:

ab=(eLn⁡(a))b=(eln⁡(r)+i(θ+2πk))b=eb(ln⁡(r)+i(θ+2πk)).{\displaystyle a^{b}=(e^{\operatorname {Ln} (a)})^{b}=(e^{\operatorname {ln} (r)+i(\theta +2\pi k)})^{b}=e^{b(\operatorname {ln} (r)+i(\theta +2\pi k))}.}

Здесь Ln{\displaystyle \operatorname {Ln} } — комплексный логарифм, ln{\displaystyle \ln } — его главное значение.

При этом комплексный логарифм — многозначная функция, так что, вообще говоря, комплексная степень определена неоднозначно[5]. Неучёт этого обстоятельства может привести к ошибкам. Пример: возведём известное тождество e2πi=1{\displaystyle e^{2\pi i}=1} в степень i.{\displaystyle i.} Слева получится e−2π,{\displaystyle e^{-2\pi },} справа, очевидно, 1. В итоге: e−2π=1,{\displaystyle e^{-2\pi }=1,} что, как легко проверить, неверно. Причина ошибки: возведение в степень i{\displaystyle i} даёт и слева, и справа бесконечное множество значений (при разных k{\displaystyle k}), поэтому правило (ab)c=abc{\displaystyle \left(a^{b}\right)^{c}=a^{bc}} здесь неприменимо. Аккуратное применение формул определения комплексной степени даёт слева и справа e−2πk;{\displaystyle e^{-2\pi k};} отсюда видно, что корень ошибки — путаница значений этого выражения при k=0{\displaystyle k=0} и при k=1.{\displaystyle k=1.}

Потенцирование (от нем. potenzieren[К 2]) — нахождение числа по известному значению его логарифма, то есть решение уравнения loga⁡x=b{\displaystyle \log _{a}x=b}. Из определения логарифма вытекает, что x=ab{\displaystyle x=a^{b}}, таким образом, возведение a{\displaystyle a} в степень b{\displaystyle b} может быть названо другими словами «потенцированием b{\displaystyle b} по основанию a{\displaystyle a}».

Антилогарифм — вычислительная операция нахождения числа по известному значению логарифма, как самостоятельное понятие используется в логарифмических таблицах, логарифмических линейках, микрокалькуляторах. Вычисление антилогарифма по основанию a{\displaystyle a} для числа b{\displaystyle b} соответствует возведению в степень ab.{\displaystyle a^{b}.}

Разновидности[править | править код]

Поскольку в выражении xy{\displaystyle x^{y}} используются два символа (x{\displaystyle x} и y{\displaystyle y}), то его можно рассматривать как одну из трёх функций.

  • Функция переменной x{\displaystyle x} (при этом y{\displaystyle y} — постоянная-параметр). Такая функция называется степенной. Обратная функция — извлечение корня.
  • Функция переменной y{\displaystyle y} (при этом x{\displaystyle x} — постоянная-параметр). Такая функция называется показательной (частный случай — экспонента). Обратная функция — логарифм.
  • Функция двух переменных f(x,y)=xy.{\displaystyle f(x,y)=x^{y}.} Отметим, что в точке (0,0){\displaystyle (0,0)} эта функция имеет неустранимый разрыв. В самом деле, вдоль положительного направления оси X,{\displaystyle X,} где y=0,{\displaystyle y=0,} она равна единице, а вдоль положительного направления оси Y,{\displaystyle Y,} где x=0,{\displaystyle x=0,} она равна нулю.

Ноль в степени ноль[править | править код]

Выражение 00{\displaystyle 0^{0}} (ноль в нулевой степени) многие учебники считают неопределённым и лишённым смысла, поскольку, как указано выше, функция f(x,y)=xy{\displaystyle f(x,y)=x^{y}} в точке (0, 0) разрывна. Некоторые авторы предлагают принять соглашение о том, что это выражение равно 1. В частности, тогда разложение в ряд экспоненты:

ex=1+∑n=1∞xnn!{\displaystyle e^{x}=1+\sum _{n=1}^{\infty }{x^{n} \over n!}}

можно записать короче:

ex=∑n=0∞xnn!.{\displaystyle e^{x}=\sum _{n=0}^{\infty }{x^{n} \over n!}.}

Следует предостеречь, что соглашени

Конспект «Степени. Свойства степеней» — УчительPRO

Степени. Свойства степеней.

Ключевые слова конспекта: степень с натуральным показателем, основание степени, показатель степени, возведение в степень, дисперсия, умножение и деление степеней, свойства степеней.



Произведение 7 • 7 • 7 • 7 • 7 записывают короче: 75. Выражение вида 75 называют пятой степенью числа 7 (читают: «семь в пятой степени»). В записи 75 число 7, которое означает повторяющийся множитель, называют основанием степени, а число 5, показывающее, сколько раз этот множитель повторяется, называют показателем степени.

Умножим 75 на 73:
75 • 73 = (7 • 7 • 7 • 7 • 7) • (7 • 7 • 7) = 7 • 7 • 7 • 7 • 7 • 7 • 7 • 7 = 78.
Показатель степени увеличился на 3. Естественно считать, что 7 = 71. Вообще считают, что первой степенью числа является само число. Например, 181 = 18, 1041 = 104.

Степень с натуральным показателем

✅ Определение. Степенью числа а с натуральным показателем n, большим 1, называют выражение аn, равное произведению n множителей, каждый из которых равен а.
Степенью числа а с показателем 1 называют выражение а1, равное а.

По определению

Запись аn читается так: «а в степени n» или «n-я (энная) степень числа а». Для второй и третьей степеней числа используют специальные названия: вторую степень числа называют квадратом, а третью степень — кубом.

Возведение в степень

Нахождение n-й степени числа а называют возведением в n-ю степень.

 Пример 1. Возведём число -3 в четвёртую и пятую степени:
 (-3)4 = (-3) • (-3) • (-3) • (-3) = 81;
 (-3)5 = (-3) • (-3) • (-3) • (-3) • (-3) = -243.

Из свойств умножения следует, что:

  •  при возведении нуля в любую степень получается нуль;
  •  при возведении положительного числа в любую степень получается положительное число;
  •  при возведении отрицательного числа в степень с чётным показателем получается положительное число, а при возведении отрицательного числа в степень с нечётным показателем — отрицательное число.

 Пример 2. Возведём число 6,1 в седьмую степень, воспользовавшись калькулятором.  Для этого надо выполнить умножение:
 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1 • 6,1.
Калькулятор позволяет выполнять возведение в степень проще, не повторяя основание степени и знак умножения. Для того чтобы возвести число 6,1 в седьмую степень, достаточно ввести число 6,1, нажать клавишу УМНОЖИТЬ и шесть раз нажать клавишу РАВНО . Получим, что 6,1

7 = 314274,28.

При вычислении значений числовых выражений, не содержащих скобки, принят следующий порядок действий: сначала выполняют возведение в степень, затем умножение и деление, далее сложение и вычитание.

 Пример 3. Найдём значение выражения -62 + 64 : (-2)5.  Последовательно находим:
1) 62 = 36;
2) (–2)5 = –32;
3) 64 : (–32) = –2;
4) –36 + (–2) = –38.

 Пример 4. Найдём множество значений выражения 5 • (–1)n + 1 + 2, где n N.
Если n — нечётное число, то (-1)n + 1 = 1; тогда 5 • (-1)n + 1 + 2 = 5 • 1 + 2 = 7.
Если n — чётное число, то (-1)n + 1 = -1; тогда  5 • (-1)n + 1 + 2 = 5 • (-1) + 2 = -5 + 2 = -3.
Множество значений данного выражения: {-3; 7}.

В рассмотренном примере было указано, что n 

N. Условимся в дальнейшем такое указание опускать и считать, что если показатель степени содержит переменную, то значениями этой переменной являются натуральные числа.

Дисперсия

Степень с натуральным показателем широко используется в естествознании для вычисления различных характеристик. Например, в статистике, для того чтобы узнать, как числа некоторой выборки расположены по отношению к среднему арифметическому этой выборки, используют отклонения, их квадраты и среднее арифметическое квадратов отклонений — дисперсию.

 Пример 5. Дана выборка: 4, 6, 7, 8, 10. Среднее арифметическое этой выборки равно 7. Тогда отклонения вариант данной выборки от среднего арифметического равны: 4 – 7 = –3, 6 – 7 = –1, 7 – 7 = 0,8 – 7 = 1, 10 – 7 = 3, т. е. мы получили ещё один набор чисел — отклонения каждой варианты выборки от среднего арифметического. По новой выборке (–3; –1; 0; 1; 3) можно судить о том, насколько близки к среднему арифметическому числа исходного набора. Но поскольку сумма отклонений равна нулю, то и среднее арифметическое этой новой выборки также равно нулю. Поэтому для дальнейших исследований исходного набора находят квадраты отклонений и их среднее арифметическое


Полученное число и есть дисперсия исходной выборки.

Умножение степеней

Представим произведение степеней а5 и а2 в виде степени:
а5 • а2 = (а • а • а • а • а) • (а • а) = а • а • а • а • а • а • а = а7.
Мы получили степень с тем, же основанием и показателем, равным сумме показателей множителей. Подмеченное свойство выполняется для произведения любых двух степеней с одинаковыми основаниями.

Если а — произвольное число, m и n — любые натуральные числа, то аm • аn = аm+ n

Докажем это. Из определения степени и свойств умножения следует, что

Доказанное свойство называется основным свойством степени. Оно распространяется на произведение трёх и более степеней. Это нетрудно показать с помощью таких же рассуждений.

Из основного свойства степени следует правило:

  • чтобы перемножить степени с одинаковыми основаниями, надо основание оставить тем же, а показатели степеней сложить.
Деление степеней

Представим теперь в виде степени частное степеней а8 и а3, где а ≠ 0. Так как а3 • а5 = а8, то по определению частного а8 : а3 = а5.

Мы получили степень с тем же основанием и показателем, равным разности показателей делимого и делителя. Такое свойство выполняется для частного любых степеней с одинаковыми основаниями, не равными нулю, у которых показатель делимого больше показателя делителя.

Если а — произвольное число, не равное нулю, m и n — любые натуральные числа, причём m > n, то аm : аn = аm — n, где а ≠ 0, m ≥ n

Докажем это. Умножим аm — n на аn, используя основное свойство степени:
am – n • an = a(m – n) + n = am – n + n = am

Из доказанного свойства следует правило:

  • чтобы выполнить деление степеней с одинаковыми основаниями, надо основание оставить тем же, а из показателя делимого вычесть показатель делителя.
Степень с нулевым показателем

Мы рассматривали степени с натуральными показателями. Введём теперь понятие степени с нулевым показателем.

✅ Определение. Степенью числа а, где а ≠ 0, с нулевым показателем называется выражение а

0, равное 1.

Например, 50 = 1;   (–6,3)0 = 1. Выражение 00 не имеет смысла.

 

Степени. Свойства степеней


Это конспект по математике на тему «Степени. Свойства степеней». Выберите дальнейшие действия:

Знаки классности — мастер, 1, 2, 3 степени, знак СССР в World of Tanks

Achievement_markOfMastery4.png В обновлении 7.2 в список достижений World of Tanks добавились знаки классности. Знаки классности присуждаются игроку за получение значительного количества опыта за бой. Знак классности будет присвоен игроку в том случае, если он сможет получить больше опыта, чем большинство игроков на той же технике за последние 7 дней. Награда и знаки классности СССР выдаются сразу же после окончания боя. Achievement_markOfMastery4.png
Знак классности «Мастер». Выдаётся игроку, который по количеству набранного опыта вошёл в 1% лучших игроков за 7 дней. Achievement_markOfMastery3.png Знак классности 1-й степени. Выдаётся игроку, количество набранного опыта которого превышает средний результат лучших 5% игроков за 7 дней. Achievement_markOfMastery2.png Знак классности 2-й степени. Выдаётся игроку, количество набранного опыта которого превышает средний результат лучших 20% игроков за 7 дней. Achievement_markOfMastery1.png
Знак классности 3-й степени. Выдаётся игроку, количество набранного опыта которого превышает средний результат лучших 50% игроков за 7 дней.


Некоторые особенности и условия получения знаков классности:

  • Опыт рассматривается без учёта премиум аккаунта и двойного/тройного/пятикратного коэффициента.
  • Знаки классности не отнимаются и не понижаются. Если игрок сыграл в следующий раз хуже — знак классности не понизится.
  • При получении более высокого знака классности он добавляется вместо более низкого.
  • Если вы получили знак «Мастер», то другие знаки классности на этом танке присваиваться не будут.
  • Знаки классности не выдаются за опыт, полученный до выхода обновления 7.2.
  • Знаки классности отображаются возле каждого танка в личной статистике игрока.
  • Игроки проигравшей команды, получившие медаль из списка «достойное сопротивление», получают дополнительный опыт, который не отображается в послебоевой статистике, но учитывается при выдаче знака классности.
Пример
За последние 7 дней у 5% лучших игроков на танке БТ-7 высший результат составил от 600 и более единиц опыта за бой. Если на этом танке получено 610 опыта без премиум-аккаунта за бой, значит требования для присвоения «Первого класса» выполнены. Если же получено 750 опыта с учетом премиум-аккаунта (который прибавляет еще 50% опыта), то реальное значение составит 500 единиц опыта — требования для получения знака «Первого класса» не выполнены.

Степень -1 | Алгебра

Как возвести число в степень -1?

По определению степени с отрицательным показателем,

   

Например,

   

   

   

   

Число в минус первой степени и данное число являются взаимно обратными числами.

Чтоьы возвести обыкновенную дробь в степень -1, нужно ее числитель и знаменатель поменять местами («перевернуть»):

   

Например,

   

   

   

   

Чтобы возвести в степень минус 1 смешанное число, его предварительно нужно перевести в неправильную дробь. Например,

   

   

   

   

Чтобы возвести в минус первую степень десятичную дробь, её сначала лучше перевести в обыкновенную:

   

   

   

   

Правила ввода математических выражений

Ввод чисел:

Целые числа вводятся обычным способом, например: 4; 18; 56
Для ввода отрицательного числа необходимо поставить знак минус: -19; -45; -90
Рациональные числа вводятся с использованием символа /, например: 3/4;-5/3;5/(-19)
Вещественные числа вводятся с использованием точки в качестве разделителя целой и дробной частей: 4.5;-0.4

Ввод переменных и констант:

Переменные и константы вводятся латинскими буквами, например: x; y; z; a; b.
Константы π и e вводятся как pi и e — соответственно.
Символ бесконечности ∞ вводится двумя маленькими латинскими буквами oo или словом inf.
Соответственно, плюс бесконечность задается как +oo, и минус бесконечность как -oo.

Сумма и разность:

Сумма и разность задаются при помощи знаков + и — соответственно, например: 3+a; x+y; 5-4+t; a-b+4; ВНИМАНИЕ! Никаких пробелов между операндами быть не должно, например ввод: x + a — неправильный, правильно вводить так: x+a — без пробелов.

Умножение:

Умножение задается знаком *, например: 3*t; x*y; -5*x.
ВНИМАНИЕ! Ввод знака * необходим всегда, т.е. запись типа: 2x — недопустима . Следует всегда использовать знак * , т.е правильная запись: 3*x.

Деление:

Деление задается знаком /, например: 15/a; y/x;.

Степень:

Степень задается знаком ^, например: x^2; 4^2; y^(-1/2).

Приоритет операций:

Для указания (или изменения) приоритета операций необходимо использовать скобки (), например: (a+b)/4 — тут вначале будет произведено сложение a+b, а потом сумма разделится на 4, тогда как без скобок: — сначала b разделится на 4 и к полученному прибавится a. ВНИМАНИЕ! В непонятных случаях лучше всегда использовать скобки для получения нужного результата, например: 2^4^3 — неясно как будет вычислено это выражение: cначала 2^4, а затем результат в степень 3, или сначала 4^3=64, а затем 2^64? Поэтому, в данном случае, необходимо использовать скобки: (2^4)^3 или 2^(4^3) — смотря что нужно.
Также распространенной ошибкой является запись вида: x^3/4 - непонятно: вы хотите возвести x в куб и полученное выражение разделить на 4, или хотите возвести x в степень 3/4? В последнем случае необходимо использовать скобки: x^(3/4).

Ввод функций:

Функции вводятся с использованием маленьких латинских букв: sin; cos; tan; log.
ВНИМАНИЕ! Аргумент функции всегда берется в скобки (), например: sin(4); cos(x); log(4+y).
Запись типа: sin 4; cos x; log 4+y — недопустима. Правильная запись: sin(4); cos(x); log(4+y).
Если необходимо возвести функцию в степень, например: синус x и все это в квадрате, это записывается вот так: (sin(x))^2. Если необходимо возвести в квадрат аргумент, а не функцию (т.е синус от x^2), тогда это выглядит вот так: sin(x^2). Запись типа: sin^2 x — недопустима.

Список поддерживаемых функций
Функция Описание Пример ввода Примечания
квадратный корень sqrt(x) или x^(1/2)
корень n-ой степени x^(1/n)
log(x) или ln(x) натуральный логарифм log(x) или ln(x)
log10(x) или lg(x) десятичный логарифм lg(x)
loga(b) произвольный логарифм lg(b)/lg(a)
ex экспонента exp(x)
sin(x) синус sin(x)
cos(x) косинус cos(x)
tan(x) или tg(x) тангенс tan(x) или tg(x)
cot(x) или ctg(x) котангенс cot(x) или ctg(x)
sec(x) секанс sec(x) sec(x)=1/cos(x)
csc(x) или cosec(x) косеканс csc(x) или cosec(x) csc(x)=1/sin(x)
sin−1(x) или arcsin(x) арксинус arcsin(x) или asin(x)
cos−1(x) или arccos(x) арккосинус arccos(x) или acos(x)
tan−1(x) или arctan(x) арктангенс arctg(x) или atan(x)
cot−1(x) или arcctg(x) арккотангенс arcctg(x) или acot(x)
sec−1(x) или arcsec(x) арксеканс arcsec(x) или asec(x) arcsec(x)=arccos(1/x)
csc−1(x) или arccosec(x) арккосеканс arccosec(x) или acsc(x) arcsec(x)=arcsin(1/x)
sinh(x) гиперболический синус sinh(x) sinh(x)=(exp(x)-exp(-x))/2
cosh(x) гиперболический косинус cosh(x) cosh(x)=(exp(x)+exp(-x))/2
tanh(x) гиперболический тангенс tanh(x) tanh(x)=sinh(x)/cosh(x)
coth(x) гиперболический котангенс coth(x) coth(x)=cosh(x)/sinh(x)
sech(x) гиперболический секанс sech(x) sech(x)=1/cosh(x)
csch(x) гиперболический косеканс cosech(x) или csch(x) csch(x)=1/sinh(x)
sinh−1(x) или arcsinh(x) гиперболический арксинус arcsinh(x) или asinh(x)
cosh−1(x) или arccosh(x) гиперболический арккосинус arccosh(x) или acosh(x)
tanh−1(x) или arctanh(x) гиперболический арктангенс arctanh(x) или atanh(x)
coth−1(x) или arccoth(x) гиперболический арккотангенс arccoth(x) или acoth(x)
sech−1(x) или arcsech(x) гиперболический арксеканс arcsech(x) или asech(x) arcsech(x)=arccosh(1/x)
csch−1(x) или arccsch(x) гиперболический арккосеканс arccsch(x) или acsch(x) arccsch(x)=arcsinh(1/x)


Обобщение понятия степени и решение примеров со степенями

Здравствуйте. Многие ученики испытывают сложности при решении заданий, в которых встречаются выражения с корнями. В данной статье я попытаюсь обобщить материал по темам «Радикал» и «Степень». Покажу как решать некоторые задания. Если у Вас во время прочтения статьи появятся вопросы, Вы можете записаться ко мне на занятие, я с радостью помогу Вам во всем разобраться, помогу с решением именно Ваших задач! 

1. Свойства степеней и корней

Степенью числа а с натуральным показателем n называется произведение n множителей, каждый из которых равняется а.
Степень числа а с показателем обозначают an, например:

В общем случае при > 1  имеем

Число a называется основой степени, число n — показателем степени.

Приведем основные свойства действий со степенями.

Приведенные свойства обобщаются для любых показателей степени

Часто в вычислениях используются степени с рациональным показателем. При этом удобным оказалось такое обозначение:

Корнем nой степени из числа а называется число b, n— я степень которого равняется a:

Корень также называется радикалом.

Корень нечетной степени n всегда существует. Корень четной степени 2из отрицательного числа не существует. Существуют два противоположных числа, которые являются корнями четной степени из положительного числа а > 0. Положительный корень n— ой степени из положительного числа называют арифметическим корнем.

Из формул (3), (4) вытекают такие свойства радикалов

Если степень корня n = 2, то показатель корня обычно не пишется. 

Пример 1.1. Найти значение выражения

Подкоренное выражение разложим на простые множители:

Пример 1.2. Упростить выражение

Имеем: 

 

Пример 1.3. Извлечь корень 

Имеем: 

Пример 1.4. Упростить выражение 

Поскольку при

2. Действия с радикалами

1) Преобразование корня по формуле  называется внесением множителя под знак радикала.

Пример 2.1. Внести множитель под знак корня 5√2.

Исходя из формулы (7) получим 

Пример 2.2. Внести множитель под знак радикала xy  при x< 0.

Имеем равенство 

2) Преобразование корня исходя из формулы  называется вынесением множителя из-под знака радикала.

Пример 2.3. Вынести множитель из-под знака корня в выражении  

Получим: 

Пример 2.4. Вынести множитель из-под знака корня

Имеем: 

Пример 2.5. Вынести множитель из-под знака корня:

Радикалы вида , где a, b — рациональные числа, называются подобными. Их можно прибавлять и отнимать:

Пример 2.6. Упростить:

Пример 2.7. Сложить радикалы:

Пример 2.8. Выполнить действие:

Заметим, что равенство  не выполняется. В этом можно убедиться на таком примере:

Приведем примеры умножения радикалов.

Пример 2.9.

Аналогично освобождаются от кубических иррациональностей в знаменателе:

Рассмотрим более сложные примеры рационализации знаменателей:

Чтобы перемножить радикалы с разными степенями, их сначала превращают в радикалы с одинаковыми степенями.

Пример 2.10. Перемножим радикалы:

Во время умножения радикалов можно использовать формулы сокращенного умножения. Например:

Если радикалы находятся в знаменателе дроби, то, используя свойства радикалов, можно избавиться от иррациональности. 

Пример 2.11. Рационализируем знаменатели дробей

Выражения  называются сопряженными. Произведение сопряженных выражений не содержит радикалов:

Это свойство используется для рационализации знаменателей.

Пример 2.12. Избавиться от иррациональности в знаменателе:

Избавимся от иррациональности в знаменателе дроби:

3. Вычисление иррациональных выражений

С помощью свойств корней можно упрощать и вычислять иррациональные выражения. 

Пример 3.1. Вычислить

Выполним последовательно действия:

Пример 3.2. Вычислить:

Выполним действия.

Часто используется формула двойного радикала:

Пример 3.3. Исходя из формулы (8) находим:

Пример 3.4. Вычислить

Исходя из формулы (8) находим:

Окончательно получаем:

Аналогично вычисляются кубические корни. Имеем:

Возводим обе части равенства в куб:

Сравнивая выражения при с, получаем однородную систему уравнений:

Поделив уравнение почленно, приходим к уравнению для = y/x:

Пример 3.5. Вычислить значение радикала

После возведения в куб уравнения приходим к системе уравнений:

Поделив почленно первое уравнение на второе, получим уравнение для z= y/x:

По схеме Горнера находим корень z = — ½

Из системы уравнений и уравнения y/x = — ½ находим x = 2= -1. Итак, 

Пример 3.6. Вычислить .

Возьмем .

Возведя обе части уравнения в куб, получаем откуда вытекает система уравнений

Система уравнений имеет очевидное решение x= 1, y= 1.

Поэтому .

Вычисляем радикал

Окончательно имеем = — 1.

Пример 3.7. Вычислить

Поскольку 

Дальше имеем:

Итак, = — 2.

Пример 3.8. Вычислить

Возведем уравнение в куб, воспользовавшись равенством .

Получили для x кубическое уравнение


или x3 – 3x – 18 = 0,

имеет корни 

Во множестве действительных чисел имеем корень = 3.

4. Оценки для радикалов

Если 

Это неравенство можно использовать для доведения неровностей, которые содержат радикалы.

Пример 4.1. Доказать, что .

Возведя неравенство в шестую степень, получим очевидное неравенство

Можно приводить радикалы к одной и то й же самой степени :

Пример 4.2. Оценим  .

Поскольку

 

При преобразовании неравенств можно использовать символ V, понимая под ним знаки « > », « < », или « ». 

Пример 4.3. Какое число больше 

.

Поскольку 

На этом все. Напоминаю, что Вы можете записываться ко мне на занятия в расписании, я с радостью помогу Вам с любыми вопросами по математике или высшей математике.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *